Advertisements
Advertisements
प्रश्न
\[x^2 - 4x + 7 = 0\]
उत्तर
We have:
\[x^2 - 4x + 7 = 0\]
\[ \Rightarrow x^2 - 4x + 4 + 3 = 0\]
\[ \Rightarrow x^2 - 2 \times x \times 2 + 2^2 - (\sqrt{3}i )^2 = 0\]
\[ \Rightarrow (x - 2 )^2 - (\sqrt{3}i )^2 = 0\]
\[ \Rightarrow (x - 2 + \sqrt{3}i) (x - 2 - \sqrt{3}i) = 0\]
\[\Rightarrow (x - 2 + \sqrt{3}i) = 0\] or, \[(x - 2 - \sqrt{3}i) = 0\]
\[\Rightarrow x = 2 - \sqrt{3}i\] or, \[x = 2 + \sqrt{3}i\]
Hence, the roots of the equation are \[2 \pm i\sqrt{3}\] .
APPEARS IN
संबंधित प्रश्न
Solve the equation x2 + 3 = 0
Solve the equation `3x^2 - 4x + 20/3 = 0`
If z1 = 2 – i, z2 = 1 + i, find `|(z_1 + z_2 + 1)/(z_1 - z_2 + 1)|`
x2 + 1 = 0
9x2 + 4 = 0
x2 + 2x + 5 = 0
\[5 x^2 - 6x + 2 = 0\]
\[17 x^2 - 8x + 1 = 0\]
\[8 x^2 - 9x + 3 = 0\]
\[2 x^2 + x + 1 = 0\]
\[\sqrt{3} x^2 - \sqrt{2}x + 3\sqrt{3} = 0\]
\[x^2 + x + \frac{1}{\sqrt{2}} = 0\]
\[3 x^2 - 4x + \frac{20}{3} = 0\]
Solving the following quadratic equation by factorization method:
\[x^2 + 10ix - 21 = 0\]
Solving the following quadratic equation by factorization method:
\[x^2 + \left( 1 - 2i \right) x - 2i = 0\]
Solve the following quadratic equation:
\[x^2 - \left( 3\sqrt{2} + 2i \right) x + 6\sqrt{2i} = 0\]
Solve the following quadratic equation:
\[\left( 2 + i \right) x^2 - \left( 5 - i \right) x + 2 \left( 1 - i \right) = 0\]
Solve the following quadratic equation:
\[x^2 - \left( 2 + i \right) x - \left( 1 - 7i \right) = 0\]
Solve the following quadratic equation:
\[i x^2 - 4 x - 4i = 0\]
Solve the following quadratic equation:
\[x^2 - x + \left( 1 + i \right) = 0\]
If a and b are roots of the equation \[x^2 - px + q = 0\], than write the value of \[\frac{1}{a} + \frac{1}{b}\].
If the difference between the roots of the equation \[x^2 + ax + 8 = 0\] is 2, write the values of a.
Write roots of the equation \[(a - b) x^2 + (b - c)x + (c - a) = 0\] .
If a and b are roots of the equation \[x^2 - x + 1 = 0\], then write the value of a2 + b2.
If α, β are roots of the equation \[x^2 + lx + m = 0\] , write an equation whose roots are \[- \frac{1}{\alpha}\text { and } - \frac{1}{\beta}\].
The complete set of values of k, for which the quadratic equation \[x^2 - kx + k + 2 = 0\] has equal roots, consists of
If a, b are the roots of the equation \[x^2 + x + 1 = 0, \text { then } a^2 + b^2 =\]
The values of x satisfying log3 \[( x^2 + 4x + 12) = 2\] are
The number of real roots of the equation \[( x^2 + 2x )^2 - (x + 1 )^2 - 55 = 0\] is
If the roots of \[x^2 - bx + c = 0\] are two consecutive integers, then b2 − 4 c is
If the equations \[x^2 + 2x + 3\lambda = 0 \text { and } 2 x^2 + 3x + 5\lambda = 0\] have a non-zero common roots, then λ =
The set of all values of m for which both the roots of the equation \[x^2 - (m + 1)x + m + 4 = 0\] are real and negative, is
If α, β are the roots of the equation \[x^2 + px + q = 0 \text { then } - \frac{1}{\alpha} + \frac{1}{\beta}\] are the roots of the equation
If the difference of the roots of \[x^2 - px + q = 0\] is unity, then