Advertisements
Advertisements
प्रश्न
Solve the following quadratic equation:
\[\left( 2 + i \right) x^2 - \left( 5 - i \right) x + 2 \left( 1 - i \right) = 0\]
उत्तर
\[ \left( 2 + i \right) x^2 - \left( 5 - i \right) x + 2\left( 1 - i \right) = 0\]
\[\text { Comparing the given equation with the general form } a x^2 + bx + c = 0, \text { we get }\]
\[a = \left( 2 + i \right), b = - \left( 5 - i \right) \text { and } c = 2\left( 1 - i \right)\]
\[x = \frac{- b \pm \sqrt{b^2 - 4ac}}{2a}\]
\[ \Rightarrow x = \frac{\left( 5 - i \right) \pm \sqrt{\left( 5 - i \right)^2 - 4\left( 2 + i \right)2\left( 1 - i \right)}}{2\left( 2 + i \right)}\]
\[ \Rightarrow x = \frac{\left( 5 - i \right) \pm \sqrt{- 2i}}{2\left( 2 + i \right)}\]
\[ \Rightarrow x = \frac{\left( 5 - i \right) \pm \sqrt{- 2i}}{2\left( 2 + i \right)} . . . \left( i \right)\]
\[\text { Let } x + iy = \sqrt{- 2i} . \text { Then }, \]
\[ \Rightarrow \left( x + iy \right)^2 = - 2i\]
\[ \Rightarrow x^2 - y^2 + 2ixy = - 2i \]
\[ \Rightarrow x^2 - y^2 = 0 \text { and } 2xy = - 2 . . . \left( ii \right)\]
\[\text { Now }, \left( x^2 + y^2 \right)^2 = \left( x^2 - y^2 \right)^2 + 4 x^2 y^2 \]
\[ \Rightarrow \left( x^2 + y^2 \right)^2 = 4\]
\[ \Rightarrow x^2 + y^2 = 2 . . . \left( iii \right)\]
\[\text { From } \left( ii \right) \text { and} \left( iii \right)\]
\[ \Rightarrow x = \pm 1 \text { and } y = \pm 1\]
\[\text { As, xy is negative } \left[ \text { from } \left( ii \right) \right]\]
\[ \Rightarrow x = 1, y = - 1 \text { or }, x = - 1, y = 1\]
\[ \Rightarrow x + iy = 1 - i\text { or,} - 1 + i\]
\[ \Rightarrow \sqrt{- 2i} = \pm \left( 1 - i \right)\]
\[\text { Substituting this value in } \left( i \right), \text { we get }\]
\[ \Rightarrow x = \frac{\left( 5 - i \right) \pm \left( 1 - i \right)}{2\left( 2 + i \right)}\]
\[ \Rightarrow x = 1 - i, \frac{4}{5} - \frac{2}{5}i\]
\[\text { So, the roots of the given quadratic equation are 1 - i and } \frac{4}{5} - \frac{2}{5}i . \]
APPEARS IN
संबंधित प्रश्न
Solve the equation x2 + 3 = 0
Solve the equation x2 + 3x + 9 = 0
Solve the equation `sqrt2x^2 + x + sqrt2 = 0`
Solve the equation 21x2 – 28x + 10 = 0
\[x^2 + 2x + 5 = 0\]
\[x^2 + x + 1 = 0\]
\[17 x^2 - 8x + 1 = 0\]
\[21 x^2 - 28x + 10 = 0\]
\[13 x^2 + 7x + 1 = 0\]
\[2 x^2 + x + 1 = 0\]
\[x^2 + x + \frac{1}{\sqrt{2}} = 0\]
\[\sqrt{5} x^2 + x + \sqrt{5} = 0\]
\[- x^2 + x - 2 = 0\]
\[3 x^2 - 4x + \frac{20}{3} = 0\]
Solving the following quadratic equation by factorization method:
\[x^2 + 10ix - 21 = 0\]
Solve the following quadratic equation:
\[x^2 - \left( 5 - i \right) x + \left( 18 + i \right) = 0\]
Solve the following quadratic equation:
\[x^2 - \left( 2 + i \right) x - \left( 1 - 7i \right) = 0\]
Solve the following quadratic equation:
\[x^2 + 4ix - 4 = 0\]
Solve the following quadratic equation:
\[x^2 - x + \left( 1 + i \right) = 0\]
Solve the following quadratic equation:
\[x^2 - \left( 3\sqrt{2} - 2i \right) x - \sqrt{2} i = 0\]
Solve the following quadratic equation:
\[2 x^2 - \left( 3 + 7i \right) x + \left( 9i - 3 \right) = 0\]
Write the number of real roots of the equation \[(x - 1 )^2 + (x - 2 )^2 + (x - 3 )^2 = 0\].
Write roots of the equation \[(a - b) x^2 + (b - c)x + (c - a) = 0\] .
If α, β are roots of the equation \[4 x^2 + 3x + 7 = 0, \text { then } 1/\alpha + 1/\beta\] is equal to
The number of real roots of the equation \[( x^2 + 2x )^2 - (x + 1 )^2 - 55 = 0\] is
If x is real and \[k = \frac{x^2 - x + 1}{x^2 + x + 1}\], then
The value of a such that \[x^2 - 11x + a = 0 \text { and } x^2 - 14x + 2a = 0\] may have a common root is
The values of k for which the quadratic equation \[k x^2 + 1 = kx + 3x - 11 x^2\] has real and equal roots are
If the equations \[x^2 + 2x + 3\lambda = 0 \text { and } 2 x^2 + 3x + 5\lambda = 0\] have a non-zero common roots, then λ =
If one root of the equation \[x^2 + px + 12 = 0\] while the equation \[x^2 + px + q = 0\] has equal roots, the value of q is
The set of all values of m for which both the roots of the equation \[x^2 - (m + 1)x + m + 4 = 0\] are real and negative, is
The number of roots of the equation \[\frac{(x + 2)(x - 5)}{(x - 3)(x + 6)} = \frac{x - 2}{x + 4}\] is
If `|(z - 2)/(z + 2)| = pi/6`, then the locus of z is ______.