Advertisements
Advertisements
प्रश्न
The complete set of values of k, for which the quadratic equation \[x^2 - kx + k + 2 = 0\] has equal roots, consists of
पर्याय
\[2 + \sqrt{12}\]
\[2 \pm \sqrt{12}\]
\[2 - \sqrt{12}\]
\[- 2 - \sqrt{12}\]
उत्तर
\[2 \pm \sqrt{12}\]
\[\text { Since the equation has real roots } . \]
\[ \Rightarrow D = 0\]
\[ \Rightarrow b^2 - 4ac = 0\]
\[ \Rightarrow k^2 - 4\left( 1 \right)\left( k + 2 \right) = 0\]
\[ \Rightarrow k^2 - 4k - 8 = 0\]
\[ \Rightarrow k = \frac{4 \pm \sqrt{16 - 4\left( 1 \right)\left( - 8 \right)}}{2\left( 1 \right)}\]
\[ \Rightarrow k = \frac{4 \pm 2\sqrt{12}}{2}\]
\[ \Rightarrow k = 2 \pm \sqrt{12}\]
APPEARS IN
संबंधित प्रश्न
Solve the equation x2 + 3x + 5 = 0
Solve the equation x2 – x + 2 = 0
Solve the equation `sqrt2x^2 + x + sqrt2 = 0`
Solve the equation `x^2 + x/sqrt2 + 1 = 0`
Solve the equation `x^2 -2x + 3/2 = 0`
If z1 = 2 – i, z2 = 1 + i, find `|(z_1 + z_2 + 1)/(z_1 - z_2 + 1)|`
9x2 + 4 = 0
x2 + 2x + 5 = 0
\[x^2 + 2x + 5 = 0\]
\[x^2 + x + 1 = 0\]
\[27 x^2 - 10 + 1 = 0\]
\[8 x^2 - 9x + 3 = 0\]
\[13 x^2 + 7x + 1 = 0\]
\[x^2 + \frac{x}{\sqrt{2}} + 1 = 0\]
Solve the following quadratic equation:
\[x^2 - \left( 3\sqrt{2} + 2i \right) x + 6\sqrt{2i} = 0\]
Solve the following quadratic equation:
\[x^2 - \left( 5 - i \right) x + \left( 18 + i \right) = 0\]
Solve the following quadratic equation:
\[x^2 - \left( 2 + i \right) x - \left( 1 - 7i \right) = 0\]
Solve the following quadratic equation:
\[x^2 + 4ix - 4 = 0\]
If roots α, β of the equation \[x^2 - px + 16 = 0\] satisfy the relation α2 + β2 = 9, then write the value P.
If α, β are roots of the equation \[x^2 - a(x + 1) - c = 0\] then write the value of (1 + α) (1 + β).
For the equation \[\left| x \right|^2 + \left| x \right| - 6 = 0\] ,the sum of the real roots is
If α, β are roots of the equation \[4 x^2 + 3x + 7 = 0, \text { then } 1/\alpha + 1/\beta\] is equal to
If α, β are the roots of the equation \[x^2 + px + 1 = 0; \gamma, \delta\] the roots of the equation \[x^2 + qx + 1 = 0, \text { then } (\alpha - \gamma)(\alpha + \delta)(\beta - \gamma)(\beta + \delta) =\]
If the roots of \[x^2 - bx + c = 0\] are two consecutive integers, then b2 − 4 c is
The value of a such that \[x^2 - 11x + a = 0 \text { and } x^2 - 14x + 2a = 0\] may have a common root is
The value of p and q (p ≠ 0, q ≠ 0) for which p, q are the roots of the equation \[x^2 + px + q = 0\] are
If α and β are the roots of \[4 x^2 + 3x + 7 = 0\], then the value of \[\frac{1}{\alpha} + \frac{1}{\beta}\] is
If α, β are the roots of the equation \[x^2 + px + q = 0 \text { then } - \frac{1}{\alpha} + \frac{1}{\beta}\] are the roots of the equation
The least value of k which makes the roots of the equation \[x^2 + 5x + k = 0\] imaginary is
The equation of the smallest degree with real coefficients having 1 + i as one of the roots is
Find the value of P such that the difference of the roots of the equation x2 – Px + 8 = 0 is 2.