हिंदी

If α, β Are the Roots of the Equation a X 2 + B X + C = 0 , Then 1 a α + B + 1 a β + B = - Mathematics

Advertisements
Advertisements

प्रश्न

If α, β are the roots of the equation \[a x^2 + bx + c = 0, \text { then } \frac{1}{a\alpha + b} + \frac{1}{a\beta + b} =\]

विकल्प

  • c / ab

  • a / bc

  • b / ac

  • none of these.

MCQ

उत्तर

b / ac
Given equation: 

\[a x^2 + bx + c = 0\]

Also, 

\[\alpha\] and  \[\beta\] are the roots of the given equation.

Then, sum of the roots = \[\alpha + \beta = - \frac{b}{a}\]

Product of the roots = \[\alpha\beta = \frac{c}{a}\]

\[\therefore \frac{1}{a\alpha + b} + \frac{1}{a\beta + b} = \frac{a\beta + b + a\alpha + b}{(a\alpha + b) (a\beta + b)} \]

\[ = \frac{a(\alpha + \beta) + 2b}{a^2 \alpha\beta + ab\alpha + ab\beta + b^2} \]

\[ = \frac{a(\alpha + \beta) + 2b}{a^2 \alpha\beta + ab\left( \alpha + \beta \right) + b^2}\]

\[ = \frac{a\left( - \frac{b}{a} \right) + 2b}{a^2 \left( \frac{c}{a} \right) + ab\left( - \frac{b}{a} \right) + b^2} \]

\[ = \frac{b}{ac}\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 14: Quadratic Equations - Exercise 14.4 [पृष्ठ १६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 14 Quadratic Equations
Exercise 14.4 | Q 7 | पृष्ठ १६

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Solve the equation x2 + 3 = 0


Solve the equation x2 + 3x + 9 = 0


Solve the equation –x2 + x – 2 = 0


Solve the equation x2 – x + 2 = 0


Solve the equation  `sqrt2x^2 + x + sqrt2 = 0`


Solve the equation  `sqrt3 x^2 - sqrt2x + 3sqrt3 = 0`


Solve the equation `x^2 + x + 1/sqrt2 = 0`


Solve the equation `3x^2 - 4x + 20/3 = 0`


If z1 = 2 – i,  z2 = 1 + i, find `|(z_1 + z_2 + 1)/(z_1 - z_2 + 1)|`


x2 + 2x + 5 = 0


x2 + x + 1 = 0


\[x^2 - 4x + 7 = 0\]


\[x^2 + 2x + 5 = 0\]


\[x^2 + x + 1 = 0\]


\[17 x^2 - 8x + 1 = 0\]


\[27 x^2 - 10 + 1 = 0\]


\[17 x^2 + 28x + 12 = 0\]


\[21 x^2 - 28x + 10 = 0\]


\[8 x^2 - 9x + 3 = 0\]


\[\sqrt{3} x^2 - \sqrt{2}x + 3\sqrt{3} = 0\]


\[x^2 + x + \frac{1}{\sqrt{2}} = 0\]


\[- x^2 + x - 2 = 0\]


\[x^2 - 2x + \frac{3}{2} = 0\]


Solving the following quadratic equation by factorization method:

\[x^2 - \left( 2\sqrt{3} + 3i \right) x + 6\sqrt{3}i = 0\]


Solve the following quadratic equation:

\[x^2 - \left( 3\sqrt{2} + 2i \right) x + 6\sqrt{2i} = 0\]


Solve the following quadratic equation:

\[x^2 - \left( 2 + i \right) x - \left( 1 - 7i \right) = 0\]


Write the number of real roots of the equation \[(x - 1 )^2 + (x - 2 )^2 + (x - 3 )^2 = 0\].


The values of x satisfying log3 \[( x^2 + 4x + 12) = 2\] are


If α, β are the roots of the equation \[x^2 + px + 1 = 0; \gamma, \delta\] the roots of the equation \[x^2 + qx + 1 = 0, \text { then } (\alpha - \gamma)(\alpha + \delta)(\beta - \gamma)(\beta + \delta) =\]


If the roots of \[x^2 - bx + c = 0\] are two consecutive integers, then b2 − 4 c is


If the equations \[x^2 + 2x + 3\lambda = 0 \text { and } 2 x^2 + 3x + 5\lambda = 0\]  have a non-zero common roots, then λ =


The number of roots of the equation \[\frac{(x + 2)(x - 5)}{(x - 3)(x + 6)} = \frac{x - 2}{x + 4}\] is 


If α, β are the roots of the equation \[x^2 - p(x + 1) - c = 0, \text { then } (\alpha + 1)(\beta + 1) =\]


If `|(z - 2)/(z + 2)| = pi/6`, then the locus of z is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×