हिंदी

If Z = ( 1 + I 1 − I ) Then Z4 Equals - Mathematics

Advertisements
Advertisements

प्रश्न

If \[z = \left( \frac{1 + i}{1 - i} \right)\] then z4 equals

विकल्प

  •  1

  • −1

  • 0

  • none of these

MCQ

उत्तर

1

\[\text {Let } z = \frac{1 + i}{1 - i}\]

Rationalising the denominator:

\[z=\frac{1 + i}{1 - i}\times\frac{1 + i}{1 + i}\]

\[\Rightarrow z = \frac{1 + i^2 + 2i}{1 - i^2}\]

\[\Rightarrow z = \frac{2i}{2}\]

\[ \Rightarrow z = i\]

\[\Rightarrow z^4 = i^4 \]

\[\text { Since} i^2 = - 1,\text {  we have }: \]

\[ \Rightarrow z^4 = i^2 \times i^2 \]

\[ \Rightarrow z^4 = 1\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 13: Complex Numbers - Exercise 13.6 [पृष्ठ ६५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 13 Complex Numbers
Exercise 13.6 | Q 19 | पृष्ठ ६५

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Express the given complex number in the form a + ib: `(5i) (- 3/5 i)`


Express the given complex number in the form a + ib: i9 + i19


Express the given complex number in the form a + ib: 3(7 + i7) + i(7 + i7)


Express the given complex number in the form a + ib: `(1/3 + 3i)^3`


If a + ib  = `(x + i)^2/(2x^2 + 1)` prove that a2 + b= `(x^2 + 1)^2/(2x + 1)^2`


Evaluate the following:

i457


Evaluate the following:

\[i^{37} + \frac{1}{i^{67}}\].


Find the value of the following expression:

i30 + i80 + i120


Find the value of the following expression:

i5 + i10 + i15


Find the value of the following expression:

1+ i2 + i4 + i6 + i8 + ... + i20


Express the following complex number in the standard form a + i b:

\[\frac{(2 + i )^3}{2 + 3i}\]


Find the multiplicative inverse of the following complex number:

1 − i


Find the multiplicative inverse of the following complex number:

\[(1 + i\sqrt{3} )^2\]


If \[z_1 = 2 - i, z_2 = 1 + i,\text {  find } \left| \frac{z_1 + z_2 + 1}{z_1 - z_2 + i} \right|\]


Find the smallest positive integer value of m for which \[\frac{(1 + i )^n}{(1 - i )^{n - 2}}\] is a real number.

 

Express the following complex in the form r(cos θ + i sin θ):

 tan α − i


If z1 and z2 are two complex numbers such that \[\left| z_1 \right| = \left| z_2 \right|\] and arg(z1) + arg(z2) = \[\pi\] then show that \[z_1 = - \bar{{z_2}}\].


Write −1 + \[\sqrt{3}\] in polar form .


Write the argument of −i.


For any two complex numbers z1 and z2 and any two real numbers a, b, find the value of \[\left| a z_1 - b z_2 \right|^2 + \left| a z_2 + b z_1 \right|^2\].


If `(3+2i sintheta)/(1-2 i sin theta)`is a real number and 0 < θ < 2π, then θ =


If z is a non-zero complex number, then \[\left| \frac{\left| z \right|^2}{zz} \right|\] is equal to


If (x + iy)1/3 = a + ib, then \[\frac{x}{a} + \frac{y}{b} =\]


The argument of \[\frac{1 - i\sqrt{3}}{1 + i\sqrt{3}}\] is


If \[z = \frac{1 + 2i}{1 - (1 - i )^2}\], then arg (z) equal


\[\text { If } z = \frac{1}{(1 - i)(2 + 3i)}, \text { than } \left| z \right| =\]


If \[z = \frac{1}{1 - cos\theta - i sin\theta}\] then Re (z) =


\[\frac{1 + 2i + 3 i^2}{1 - 2i + 3 i^2}\] equals


The complex number z which satisfies the condition \[\left| \frac{i + z}{i - z} \right| = 1\] lies on


If the complex number \[z = x + iy\] satisfies the condition \[\left| z + 1 \right| = 1\], then z lies on


Find a and b if (a+b) (2 + i) = b + 1 + (10 + 2a)i


Find a and b if abi = 3a − b + 12i


Find a and b if (a + ib) (1 + i) = 2 + i


Express the following in the form of a + ib, a, b ∈ R, i = `sqrt(−1)`. State the values of a and b:

`("i"(4 + 3"i"))/((1 - "i"))`


Evaluate the following : i35 


Evaluate the following : i888 


The real value of θ for which the expression `(1 + i cos theta)/(1 - 2i cos theta)` is a real number is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×