Advertisements
Advertisements
प्रश्न
Find the value of : x3 + 2x2 – 3x + 21, if x = 1 + 2i
उत्तर
x = 1 + 2i
∴ x – 1 = 2i
∴ (x – 1)2 = 4i2
∴ x2 – 2x + 1 = – 4 ...[∵ i2 = – 1]
∴ x2 – 2x + 5 = 0 ...(i)
x + 4
∵ `x^2 – 2x + 5")"overline(x^3 + 2x^2 - 3x + 21)"`
x3 – 2x2 + 5x
– + –
4x2 – 8x + 21
4x2 – 8x + 20
– + –
1
∴ x3 + 2x2 – 3x + 21
= (x2 – 2x + 5)(x + 4) + 1
= 0.(x + 4) + 1 ...[From (i)]
= 0 + 1
∴ x3 + 2x2 – 3x + 21 = 1
APPEARS IN
संबंधित प्रश्न
Find the multiplicative inverse of the complex number.
–i
Find the value of: x3 – x2 + x + 46, if x = 2 + 3i
Find the value of: 2x3 – 11x2 + 44x + 27, if x = `25/(3 - 4"i")`
Find the value of `("i"^6 + "i"^7 + "i"^8 + "i"^9)/("i"^2 + "i"^3)`
If a = `(-1 + sqrt(3)"i")/2`, b = `(-1 - sqrt(3)"i")/2` then show that a2 = b and b2 = a
If x + iy = (a + ib)3, show that `x/"a" + y/"b"` = 4(a2 − b2)
Select the correct answer from the given alternatives:
If n is an odd positive integer then the value of 1 + (i)2n + (i)4n + (i)6n is :
Answer the following:
Simplify the following and express in the form a + ib:
(2i3)2
Answer the following:
Simplify the following and express in the form a + ib:
`(5 + 7"i")/(4 + 3"i") + (5 + 7"i")/(4 - 3"i")`
Answer the following:
Show that `(1/sqrt(2) + "i"/sqrt(2))^10 + (1/sqrt(2) - "i"/sqrt(2))^10` = 0
The argument of the complex number `(4 + 9i)/(13 + 5i)` is ______
State true or false for the following:
Multiplication of a non-zero complex number by i rotates it through a right angle in the anti-clockwise direction.
State true or false for the following:
The complex number cosθ + isinθ can be zero for some θ.
What is the value of `(i^(4n + 1) -i^(4n - 1))/2`?
If |z1| = |z2| = ... = |zn| = 1, then show that |z1 + z2 + z3 + ... + zn| = `|1/z_1 + 1/z_2 + 1/z_3 + ... + 1/z_n|`.
State True or False for the following:
For any complex number z the minimum value of |z| + |z – 1| is 1.
Let z be a complex number such that `|(z - i)/(z + 2i)|` = 1 and |z| = `5/2`. Then the value of |z + 3i| is ______.
Show that `(-1 + sqrt3 i)^3` is a real number.
Find the value of `sqrt(-3) xx sqrt(-6)`
Evaluate the following:
i35