मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता ११ वी

Answer the following: Evaluate: (1 − i + i2)−15 - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Answer the following:

Evaluate: (1 − i + i2)−15 

बेरीज

उत्तर

(1 − i + i2)−15 = (1 − i − 1)−15

= (− i)−15

= `1/(-"i")^15`

= `(-1)/(("i"^4)^3*"i"^3)`

= `(-1)/((1)^3(-"i"))`

= `1/"i"`

= `"i"/"i"^2`

= `"i"/(-1)`

= − i

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 1: Complex Numbers - Miscellaneous Exercise 1.2 [पृष्ठ २२]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 11 Standard Maharashtra State Board
पाठ 1 Complex Numbers
Miscellaneous Exercise 1.2 | Q II. (3) (i) | पृष्ठ २२

संबंधित प्रश्‍न

Simplify the following and express in the form a + ib:

(1 + 3i)2 (3 + i)


Simplify the following and express in the form a + ib:

`(4 + 3"i")/(1 - "i")`


Simplify the following and express in the form a + ib:

`(1 + 2/"i")(3 + 4/"i")(5 + "i")^-1`


Write the conjugates of the following complex number:

`-sqrt(5) - sqrt(7)"i"`


Write the conjugates of the following complex number:

`sqrt(2) + sqrt(3)"i"`


Show that `((sqrt(7) + "i"sqrt(3))/(sqrt(7) - "i"sqrt(3)) + (sqrt(7) - "i"sqrt(3))/(sqrt(7) + "i"sqrt(3)))` is real


If (x + iy)3 = y + vi then show that `(y/x + "v"/y)` = 4(x2 – y2)


Select the correct answer from the given alternatives:

The value of is `("i"^592 + "i"^590 + "i"^588 + "i"^586 + "i"^584)/("i"^582 + "i"^580 + "i"^578 + "i"^576 + "i"^574)` is equal to:


Answer the following:

Simplify the following and express in the form a + ib:

(1 + 3i)2(3 + i)


Solve the following equation for x, y ∈ R:

2x + i9y (2 + i) = xi7 + 10i16


Answer the following:

Evaluate: i131 + i49 


Answer the following:

show that `((1 + "i")/sqrt(2))^8 + ((1 - "i")/sqrt(2))^8` = 2


Answer the following:

Simplify: `("i"^65 + 1/"i"^145)`


Answer the following:

Simplify `[1/(1 - 2"i") + 3/(1 + "i")] [(3 + 4"i")/(2 - 4"i")]`


If z ≠ 1 and `"z"^2/("z - 1")` is real, then the point represented by the complex number z lies ______.


Locate the points for which 3 < |z| < 4.


Find the value of k if for the complex numbers z1 and z2, `|1 - barz_1z_2|^2 - |z_1 - z_2|^2 = k(1 - |z_1|^2)(1 - |"z"_2|^2)`


State true or false for the following:

The points representing the complex number z for which |z + 1| < |z − 1| lies in the interior of a circle.


What is the reciprocal of `3 + sqrt(7)i`.


If the real part of `(barz + 2)/(barz - 1)` is 4, then show that the locus of the point representing z in the complex plane is a circle.


If |z1| = 1(z1 ≠ –1) and z2 = `(z_1 - 1)/(z_1 + 1)`, then show that the real part of z2 is zero.


If |z1| = |z2| = ... = |zn| = 1, then show that |z1 + z2 + z3 + ... + zn| = `|1/z_1 + 1/z_2 + 1/z_3 + ... + 1/z_n|`.


The number `(1 - i)^3/(1 - i^2)` is equal to ______.


If z1 and z2 are complex numbers such that z1 + z2 is a real number, then z2 = ______.


Where does z lie, if `|(z - 5i)/(z + 5i)|` = 1.


Let x, y ∈ R, then x + iy is a non-real complex number if ______.


If a + ib = c + id, then ______.


If z is a complex number, then ______.


If `(3 + i)(z + barz) - (2 + i)(z - barz) + 14i` = 0, then `barzz` is equal to ______.


If `(x + iy)^(1/5)` = a + ib, and u = `x/a - y/b`, then ______.


A complex number z is moving on `arg((z - 1)/(z + 1)) = π/2`. If the probability that `arg((z^3 -1)/(z^3 + 1)) = π/2` is `m/n`, where m, n ∈ prime, then (m + n) is equal to ______.


The smallest positive integer n for which `((1 + i)/(1 - i))^n` = –1 is ______.


Let z be a complex number such that `|(z - i)/(z + 2i)|` = 1 and |z| = `5/2`. Then the value of |z + 3i| is ______.


If `|(6i, -3i, 1),(4, 3i, -1),(20, 3, i)|` = x + iy, then ______.


Simplify the following and express in the form a+ib.

`(3i^5 + 2i^7 + i^9)/(i^6 + 2i^8 + 3i^18)`


Simplify the following and express in the form a+ib.

`(3i^5 + 2i^7 + i^9)/(i^6 + 2i^8 + 3i^18)`


Show that `(-1 + sqrt3i)^3` is a real number.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×