Advertisements
Advertisements
प्रश्न
Find `|(1 + i) ((2 + i))/((3 + i))|`.
उत्तर
`|(1 + i) ((2 + i))/((3 + i)) xx (3 - i)/(3 - i)|`
= `|(1 + i) . (6 - 2i + 3i - i^2)/(9 - i^2)|`
= `|((1 + i).(7 + i))/(9 + 1)|`
= `|(7 + i + 7i + i^2)/10|`
= `|(7 + 8i - 1)/10|`
= `|(6 + 8i)/10|`
= `|3/5 + 4/5 i|`
= `sqrt((3/5)^2 + (4/5)^2)`
= 1
Hence, `|(1 + i) ((2 + i)/(3 + i))|` = 1.
APPEARS IN
संबंधित प्रश्न
Find the multiplicative inverse of the complex number:
4 – 3i
Express the following expression in the form of a + ib.
`((3 + sqrt5)(3 - isqrt5))/((sqrt3 + sqrt2i)-(sqrt3 - isqrt2))`
Find the number of non-zero integral solutions of the equation `|1-i|^x = 2^x`.
If `((1+i)/(1-i))^m` = 1, then find the least positive integral value of m.
Simplify the following and express in the form a + ib:
(1 + 3i)2 (3 + i)
Find the value of i49 + i68 + i89 + i110
If (a + ib) = `(1 + "i")/(1 - "i")`, then prove that (a2 + b2) = 1
If (x + iy)3 = y + vi then show that `(y/x + "v"/y)` = 4(x2 – y2)
Find the value of x and y which satisfy the following equation (x, y ∈ R).
`((x + "i"y))/(2 + 3"i") + (2 + "i")/(2 - 3"i") = 9/13(1 + "i")`
Answer the following:
Simplify the following and express in the form a + ib:
(1 + 3i)2(3 + i)
Answer the following:
Solve the following equation for x, y ∈ R:
`(x + "i"y)/(2 + 3"i")` = 7 – i
Answer the following:
Evaluate: (1 − i + i2)−15
Answer the following:
Simplify: `("i"^238 + "i"^236 + "i"^234 + "i"^232 + "i"^230)/("i"^228 + "i"^226 + "i"^224 + "i"^222 + "i"^220)`
Find the value of 2x4 + 5x3 + 7x2 – x + 41, when x = `-2 - sqrt(3)"i"`.
Find the value of k if for the complex numbers z1 and z2, `|1 - barz_1z_2|^2 - |z_1 - z_2|^2 = k(1 - |z_1|^2)(1 - |"z"_2|^2)`
State true or false for the following:
If n is a positive integer, then the value of in + (i)n+1 + (i)n+2 + (i)n+3 is 0.
What is the smallest positive integer n, for which (1 + i)2n = (1 – i)2n?
If `((1 + i)/(1 - i))^3 - ((1 - i)/(1 + i))^3` = x + iy, then find (x, y).
If the real part of `(barz + 2)/(barz - 1)` is 4, then show that the locus of the point representing z in the complex plane is a circle.
If |z1| = 1(z1 ≠ –1) and z2 = `(z_1 - 1)/(z_1 + 1)`, then show that the real part of z2 is zero.
The value of `sqrt(-25) xx sqrt(-9)` is ______.
State True or False for the following:
For any complex number z the minimum value of |z| + |z – 1| is 1.
State True or False for the following:
The inequality |z – 4| < |z – 2| represents the region given by x > 3.
The value of `(z + 3)(barz + 3)` is equivalent to ______.
Find the value of `(i^592 + i^590 + i^588 + i^586 + i^584)/ (i^582 + i^580 + i^578 + i^576 + i^574)`
Simplify the following and express in the form a+ib.
`(3i^5 + 2i^7 + i^9)/(i^6 + 2i^8 + 3i^18`