Advertisements
Advertisements
प्रश्न
Simplify the following and express in the form a + ib:
(2i3)2
उत्तर
(2i3)2 = 4i6
= 4(i2)3
= 4(– 1)3 ...[∵ i2 = – 1]
= – 4
= – 4 + 0i
APPEARS IN
संबंधित प्रश्न
Find the value of: x3 – x2 + x + 46, if x = 2 + 3i
Simplify the following and express in the form a + ib:
`3 + sqrt(-64)`
Simplify the following and express in the form a + ib:
(2 + 3i)(1 – 4i)
Simplify the following and express in the form a + ib:
`(4 + 3"i")/(1 - "i")`
Simplify the following and express in the form a + ib:
`(3"i"^5 + 2"i"^7 + "i"^9)/("i"^6 + 2"i"^8 + 3"i"^18)`
Prove that `(1 + "i")^4 xx (1 + 1/"i")^4` = 16
If x + iy = `sqrt(("a" + "ib")/("c" + "id")`, prove that (x2 + y2)2 = `("a"^2 + "b"^2)/("c"^2 + "d"^2)`
Answer the following:
Evaluate: (1 − i + i2)−15
Answer the following:
Find the real numbers x and y such that `x/(1 + 2"i") + y/(3 + 2"i") = (5 + 6"i")/(-1 + 8"i")`
Answer the following:
Simplify: `("i"^29 + "i"^39 + "i"^49)/("i"^30 + "i"^40 + "i"^50)`
If z1 = 5 + 3i and z2 = 2 - 4i, then z1 + z2 = ______.
Find the value of k if for the complex numbers z1 and z2, `|1 - barz_1z_2|^2 - |z_1 - z_2|^2 = k(1 - |z_1|^2)(1 - |"z"_2|^2)`
1 + i2 + i4 + i6 + ... + i2n is ______.
If the real part of `(barz + 2)/(barz - 1)` is 4, then show that the locus of the point representing z in the complex plane is a circle.
The value of `sqrt(-25) xx sqrt(-9)` is ______.
The sum of the series i + i2 + i3 + ... upto 1000 terms is ______.
Let |z| = |z – 3| = |z – 4i|, then the value |2z| is ______.
The complex number z = x + iy which satisfy the equation `|(z - 5i)/(z + 5i)|` = 1, lie on ______.
Simplify the following and express in the form a + ib.
`(3i^5 +2i^7 +i^9)/(i^6 +2i^8 +3i^18)`
Simplify the following and express in the form a+ib:
`(3i^5 + 2i^7 + i^9)/(i^6 + 2i^8 + 3i^18)`