Advertisements
Advertisements
Question
Express the following in the form a + ib, a, b ∈ R, using De Moivre's theorem:
`(-2sqrt(3) - 2"i")^5`
Solution
Let z = `-2sqrt(3) - 2"i"`
∴ a = `-2sqrt(3)`, b = –2, i.e. a < 0, b < 0
∴ |z| = `sqrt("a"^2 + "b"^2) = sqrt((-2sqrt(3))^2 + (-2)^2) = sqrt(12 + 4)` = 4
Here `(-2sqrt(3), -2)` lies in 3rd quadrant.
∴ amp (z) = `pi + tan^-1("b"/"a")`
= `pi + tan^-1((-2)/(-2sqrt(3)))`
= `pi - tan^-1(1/sqrt(3))`
= `pi - pi/6`
= `(5pi)/6`
z5 = `(-2sqrt(3) - 2"i")^5`
= `[4(cos (5pi)/6 + "i"sin (5pi)/6)]^5`
= `1024(cos (25pi)/6 + "i"sin (25pi)/6)` ...[∵ (cos θ + i sin θ)n = (cos n θ + i sin n θ)]
= `1024[cos(4pi + pi/6) + "i"sin(4pi + pi/6)]`
= `1024(cos pi/6 - "i"sin pi/6)`
= `1024[sqrt(3)/2 - 1/2"i"]`
= `512sqrt(3) - 512"i"`
APPEARS IN
RELATED QUESTIONS
Use De Moivres theorem and simplify the following:
`(cos2theta + "i"sin2theta)^7/(cos4theta + "i"sin4theta)^3`
Use De Moivres theorem and simplify the following:
`(cos5theta + "i"sin5theta)/((cos3theta - "i"sin3theta)^2`
Use De Moivres theorem and simplify the following:
`(cos (7pi)/13 + "i"sin (7pi)/13)^4/(cos (4pi)/13 - "i"sin (4pi)/13)^6`
Express the following in the form a + ib, a, b ∈ R, using De Moivre's theorem:
(1 − i)5
Express the following in the form a + ib, a, b ∈ R, using De Moivre's theorem:
(1 + i)6
Express the following in the form a + ib, a, b ∈ R, using De Moivre's theorem:
`(1 - sqrt(3)"i")^4`
Select the correct answer from the given alternatives:
If z = r(cos θ + i sin θ), then the value of `"z"/bar("z") + bar("z")/"z"`