Advertisements
Advertisements
Question
Express the following in the form a + ib, a, b ∈ R, using De Moivre's theorem:
`(1 - sqrt(3)"i")^4`
Solution
Let z = `1 - sqrt(3)"i"`
This is of the form a + bi, where a = 1, b = `-sqrt(3)`
∴ r = `sqrt("a"^2 + "b"^2) = sqrt(1^2 + (-sqrt(3))^2`
= `sqrt(1 + 3)`
= 2
Also, cos θ = `"a"/"r" = 1/2`
and sin θ = `"b"/"r" = (-sqrt(3))/2`
∴ θ lies in the fourth quadrant.
∴ tan θ = `sintheta/costheta`
= `(((-sqrt3)/2))/((1/2)`
= `-sqrt(3)`
= `-tan pi/3`
= `tan(2pi - pi/3)`
= `tan (5pi)/3`
∴ θ = `(5pi)/3`
∴ z = `1 - sqrt(3)"i" ` = r(cos θ + i sin θ)
= `2(cos (5pi)/3 + "i" sin (5pi)/3)`
∴ `(1 - sqrt(3)"i")^4 = [2(cos (5pi)/3 + "i" sin (5pi)/3)]^4`
= `2^4[cos(2pi - pi/3) + "i" sin(2pi - pi/3)]^4`
= `16(cos pi/3 - "i" sin pi/3)^4`
= `16(cos (4pi)/3 - "i" sin (4pi)/3)` ...[∵ (cos θ + i sin θ)n = cos nθ + i sin nθ]
= `16[cos(pi + pi/3) - "i" sin(pi + pi/3)]`
= `16(-cos pi/3 + "i" sin pi/3)`
= `16[-1/2 + "i"(sqrt(3)/2)]`
= `-8 + 8sqrt(3)"i"`.
APPEARS IN
RELATED QUESTIONS
Use De Moivres theorem and simplify the following:
`(cos2theta + "i"sin2theta)^7/(cos4theta + "i"sin4theta)^3`
Use De Moivres theorem and simplify the following:
`(cos5theta + "i"sin5theta)/((cos3theta - "i"sin3theta)^2`
Use De Moivres theorem and simplify the following:
`(cos (7pi)/13 + "i"sin (7pi)/13)^4/(cos (4pi)/13 - "i"sin (4pi)/13)^6`
Express the following in the form a + ib, a, b ∈ R, using De Moivre's theorem:
(1 − i)5
Express the following in the form a + ib, a, b ∈ R, using De Moivre's theorem:
(1 + i)6
Express the following in the form a + ib, a, b ∈ R, using De Moivre's theorem:
`(-2sqrt(3) - 2"i")^5`
Select the correct answer from the given alternatives:
If z = r(cos θ + i sin θ), then the value of `"z"/bar("z") + bar("z")/"z"`