Advertisements
Advertisements
Question
Use De Moivres theorem and simplify the following:
`(cos5theta + "i"sin5theta)/((cos3theta - "i"sin3theta)^2`
Solution
`(cos5theta + "i"sin5theta)/((cos3theta - "i"sin3theta)^2`
= `(cos 5theta + "i" sin 5theta)/[cos(-3theta) + "i" sin(-3theta)]^2` ...[∵ cos(– θ) = cos θ, sin(– θ) = – sin θ]
= `(cos theta + "i" sin theta)^5/((cos theta + "i" sin theta)^(-3 xx 2)` ...[∵ (cos θ + i sin θ)n = cos nθ + i sin nθ]
= (cos θ + i sin θ)5+6
= (cos θ + i sin θ)11
= cos 11θ + i sin 11θ
APPEARS IN
RELATED QUESTIONS
Use De Moivres theorem and simplify the following:
`(cos2theta + "i"sin2theta)^7/(cos4theta + "i"sin4theta)^3`
Use De Moivres theorem and simplify the following:
`(cos (7pi)/13 + "i"sin (7pi)/13)^4/(cos (4pi)/13 - "i"sin (4pi)/13)^6`
Express the following in the form a + ib, a, b ∈ R, using De Moivre's theorem:
(1 − i)5
Express the following in the form a + ib, a, b ∈ R, using De Moivre's theorem:
(1 + i)6
Express the following in the form a + ib, a, b ∈ R, using De Moivre's theorem:
`(1 - sqrt(3)"i")^4`
Express the following in the form a + ib, a, b ∈ R, using De Moivre's theorem:
`(-2sqrt(3) - 2"i")^5`
Select the correct answer from the given alternatives:
If z = r(cos θ + i sin θ), then the value of `"z"/bar("z") + bar("z")/"z"`