English

Use De Moivres theorem and simplify the following: (cos 7π13+isin 7π13)4(cos 4π13-isin 4π13)6 - Mathematics and Statistics

Advertisements
Advertisements

Question

Use De Moivres theorem and simplify the following:

`(cos  (7pi)/13 + "i"sin  (7pi)/13)^4/(cos  (4pi)/13 - "i"sin  (4pi)/13)^6`

Sum

Solution

`(cos  (7pi)/13 + "i"sin  (7pi)/13)^4/(cos  (4pi)/13 - "i"sin  (4pi)/13)^6`

= `(cos  (7pi)/13 + "i"sin  (7pi)/13)^4/([cos  ((-4pi)/13) + "i"sin  ((-4pi)/13)]^6)`   ...[∵ sin (– θ) = – sin θ, cos (– θ) = cos θ]

= `(cos pi + "i" sin pi)^(7/13 xx 4)/(cos pi + "i"sin pi)^((-4)/13 xx 6)`  ...[∵ cos n θ + i sin n θ = (cos θ + i sin θ)n]

= `(cos  pi + "i" sin pi)^(7/13 xx 4) (cos pi + "i"sin pi)^(4/13 xx 6)`

= `(cos pi + "i" sin pi)^(28/13 + 24/13)`

= (cos π + i sin π)4

= cos 4π + i sin 4π  ...[∵ (cos θ + i sin θ)n = (cos n θ + i sin n θ)]

= 1 + i(0)

= 1

shaalaa.com
De Moivres Theorem
  Is there an error in this question or solution?
Chapter 1: Complex Numbers - Exercise 1.4 [Page 20]

APPEARS IN

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×