Advertisements
Advertisements
Question
Express the following in the form a + ib, a, b ∈ R, using De Moivre's theorem:
(1 − i)5
Solution
Let z = 1 − i
This is of the form a + bi, where a = 1, b = −1
∴ r = `sqrt("a"^2 + "b"^2)`
= `sqrt(1^2 + (-1)^2)`
= `sqrt(1 + 1)`
= `sqrt(2)`
Also, cos θ = `"a"/"r" = 1/sqrt(2)` and sin θ = `"b"/"r" = (-1)/sqrt(2)`
∴ θ lies in the fourth quadrant.
∴ tan θ = `sintheta/costheta = (((-1)/sqrt(2)))/((1/sqrt(2))` = −1
= `- tan pi/4`
= `tan(2pi - pi/4)`
∴ θ = `(7pi)/4 = tan (7pi)/4`
∴ z = r(cos θ + i sin θ) = `sqrt(2)(cos (7pi)/4 + "i" sin (7pi)/4)`
∴ z5 = (1 − i)5 = `[sqrt(2)(cos (7pi)/4 + "i" sin (7pi)/4)]^5`
= `(sqrt(2))^5[cos(2pi - pi/4) + "i" sin(2pi - pi/4)]^5`
= `4sqrt(2)(cos pi/4 - "i" sin pi/4)^5`
= `4sqrt(2)(cos (5pi)/4 - "i" sin (5pi)/4)` ...[∵ (cos θ + i sin θ)n = cos nθ + i sin nθ]
= `4sqrt(2)[cos(pi + pi/4) - "i" sin(pi + pi/4)]`
= `4sqrt(2)(-cos pi/4 + "i" sin pi/4)`
= `4sqrt(2)(- 1/sqrt(2) + "i" xx 1/sqrt(2))`
= – 4 + 4i
APPEARS IN
RELATED QUESTIONS
Use De Moivres theorem and simplify the following:
`(cos2theta + "i"sin2theta)^7/(cos4theta + "i"sin4theta)^3`
Use De Moivres theorem and simplify the following:
`(cos5theta + "i"sin5theta)/((cos3theta - "i"sin3theta)^2`
Use De Moivres theorem and simplify the following:
`(cos (7pi)/13 + "i"sin (7pi)/13)^4/(cos (4pi)/13 - "i"sin (4pi)/13)^6`
Express the following in the form a + ib, a, b ∈ R, using De Moivre's theorem:
(1 + i)6
Express the following in the form a + ib, a, b ∈ R, using De Moivre's theorem:
`(1 - sqrt(3)"i")^4`
Express the following in the form a + ib, a, b ∈ R, using De Moivre's theorem:
`(-2sqrt(3) - 2"i")^5`
Select the correct answer from the given alternatives:
If z = r(cos θ + i sin θ), then the value of `"z"/bar("z") + bar("z")/"z"`