हिंदी

Find the equation in cartesian coordinates of the locus of z if |z+3iz-6i| = 1 - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Find the equation in cartesian coordinates of the locus of z if `|("z" + 3"i")/("z" - 6"i")|` = 1

योग

उत्तर

Let z = x + iy, then

`|("z" + 3"i")/("z" - 6"i")|` = 1 gives

`|(x + iy + 3"i")/(x + iy - 6"i")|` = 1

∴ `|(x + (y + 3)"i")/(x + (y - 6)"i")| = 1   ...[because |"z"_1/"z"_2| = |"z"_1/"z"_2|]`

∴ |x + (y + 3)i = |x + (y – 6)i|

∴ `sqrt(x^2 + (y + 3)^2) = sqrt(x^2 + (y - 6)^2)`

x2 + (y + 3)2 = x2 + (y – 6)2

∴ x2 + y2 + 6y + 9 = x2 + y2 – 12y + 36

∴ 18y – 27 = 0

∴ 2y – 3 = 0

This is the equation of the required locus.

shaalaa.com
Cube Root of Unity
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 1: Complex Numbers - Exercise 1.4 [पृष्ठ २०]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 11 Standard Maharashtra State Board
अध्याय 1 Complex Numbers
Exercise 1.4 | Q 6. (vi) | पृष्ठ २०

संबंधित प्रश्न

If ω is a complex cube root of unity, show that `(("a" + "b"omega + "c"omega^2))/("c" + "a"omega + "b"omega^2) = omega^2`.


If ω is a complex cube root of unity, find the value of (1 - ω - ω2)3 + (1 - ω + ω2)3


If ω is a complex cube root of unity, then prove the following: (ω2 + ω - 1)3 = – 8


Find the value of ω18


Find the value of ω21


If ω is a complex cube root of unity, show that (1 + ω − ω2)6 = 64


If ω is a complex cube root of unity, show that (2 + ω + ω2)3 − (1 − 3ω + ω2)3 = 65


If ω is a complex cube root of unity, show that `("a" + "b"ω + "c"ω^2)/("c" + "a"ω + "b"ω^2)` = ω2


If ω is a complex cube root of unity, show that (a + b)2 + (aω + bω2)2 + (aω2 + bω)2 = 6ab


If ω is a complex cube root of unity, find the value of ω2 + ω3 + ω4


If ω is a complex cube root of unity, find the value of (1 + ω2)3


If ω is a complex cube root of unity, find the value of (1 + ω)(1 + ω2)(1 + ω4)(1 + ω8)


If α and β are the complex cube root of unity, show that α4 + β4 + α−1β−1 = 0


If , where α and β are the complex cube-roots of unity, show that xyz = a3 + b3.


Find the equation in cartesian coordinates of the locus of z if |z| = 10


Find the equation in cartesian coordinates of the locus of z if |z – 3| = 2


Find the equation in cartesian coordinates of the locus of z if |z − 5 + 6i| = 5


Select the correct answer from the given alternatives:

If ω is a complex cube root of unity, then the value of ω99+ ω100 + ω101 is :


If ω(≠1) is a cube root of unity and (1 + ω)7 = A + Bω, then A and B are respectively the numbers ______.


Answer the following:

If ω is a complex cube root of unity, prove that (1 − ω + ω2)6 +(1 + ω − ω2)6 = 128


If ω is the cube root of unity then find the value of `((-1 + "i"sqrt(3))/2)^18 + ((-1 - "i"sqrt(3))/2)^18`


Let α be a root of the equation 1 + x2 + x4 = 0. Then the value of α1011 + α2022 – α3033 is equal to ______.


If 1, α1, α2, ...... αn–1 are the roots of unity, then (1 + α1)(1 + α2) ...... (1 + αn–1) is equal to (when n is even) ______.


Simplify the following and express in the form a + ib.

`(3i^5 + 2i^7 + i^9)/(i^6 + 2i^8 + 3i^18)`


If w is a complex cube root of unity, show that `((a+bw+cw^2))/(c+aw+bw^2) = w^2`


If w is a complex cube root of unity, show that

`((a + bw + cw^2)) /( c + aw + bw^2 )= w^2`


If w is a complex cube root of unity, show that, `((a + bw + cw^2))/(c + aw + bw^2) = w^2`


If w is a complex cube root of unity, show that `((a + bw +cw^2))/(c +aw + bw^2) = w^2`


If w is a complex cube-root of unity, then prove the following:

2 + ω − 1)3 = −8


If w is a complex cube root of unity, show that `((a+bw+cw^2))/(c+aw+bw^2) =w^2`


If w is a complex cube root of unity, show that `((a + bω + cω^2))/(c + aω + bω^2) = ω^2`


If ω is a complex cube-root of unity, then prove the following:

2 + ω −1)3 = −8


Find the value of `sqrt(-3) xx sqrt(-6)`.


If w is a complex cube-root of unity, then prove the following

(w2 + w - 1)3 = - 8


If w is a complex cube-root of unity, then prove the following. 

(w+ w - 1)= - 8


If ω is a complex cube root of unity, show that `((a + bomega + comega^2))/(c + aomega + bomega^2)=omega^2`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×