Advertisements
Advertisements
प्रश्न
Find the equation in cartesian coordinates of the locus of z if `|("z" + 3"i")/("z" - 6"i")|` = 1
उत्तर
Let z = x + iy, then
`|("z" + 3"i")/("z" - 6"i")|` = 1 gives
`|(x + iy + 3"i")/(x + iy - 6"i")|` = 1
∴ `|(x + (y + 3)"i")/(x + (y - 6)"i")| = 1 ...[because |"z"_1/"z"_2| = |"z"_1/"z"_2|]`
∴ |x + (y + 3)i = |x + (y – 6)i|
∴ `sqrt(x^2 + (y + 3)^2) = sqrt(x^2 + (y - 6)^2)`
x2 + (y + 3)2 = x2 + (y – 6)2
∴ x2 + y2 + 6y + 9 = x2 + y2 – 12y + 36
∴ 18y – 27 = 0
∴ 2y – 3 = 0
This is the equation of the required locus.
APPEARS IN
संबंधित प्रश्न
If ω is a complex cube root of unity, show that `(("a" + "b"omega + "c"omega^2))/("c" + "a"omega + "b"omega^2) = omega^2`.
If ω is a complex cube root of unity, find the value of (1 - ω - ω2)3 + (1 - ω + ω2)3
If ω is a complex cube root of unity, then prove the following: (ω2 + ω - 1)3 = – 8
Find the value of ω18
Find the value of ω21
If ω is a complex cube root of unity, show that (1 + ω − ω2)6 = 64
If ω is a complex cube root of unity, show that (2 + ω + ω2)3 − (1 − 3ω + ω2)3 = 65
If ω is a complex cube root of unity, show that `("a" + "b"ω + "c"ω^2)/("c" + "a"ω + "b"ω^2)` = ω2
If ω is a complex cube root of unity, show that (a + b)2 + (aω + bω2)2 + (aω2 + bω)2 = 6ab
If ω is a complex cube root of unity, find the value of ω2 + ω3 + ω4
If ω is a complex cube root of unity, find the value of (1 + ω2)3
If ω is a complex cube root of unity, find the value of (1 + ω)(1 + ω2)(1 + ω4)(1 + ω8)
If α and β are the complex cube root of unity, show that α4 + β4 + α−1β−1 = 0
If , where α and β are the complex cube-roots of unity, show that xyz = a3 + b3.
Find the equation in cartesian coordinates of the locus of z if |z| = 10
Find the equation in cartesian coordinates of the locus of z if |z – 3| = 2
Find the equation in cartesian coordinates of the locus of z if |z − 5 + 6i| = 5
Select the correct answer from the given alternatives:
If ω is a complex cube root of unity, then the value of ω99+ ω100 + ω101 is :
If ω(≠1) is a cube root of unity and (1 + ω)7 = A + Bω, then A and B are respectively the numbers ______.
Answer the following:
If ω is a complex cube root of unity, prove that (1 − ω + ω2)6 +(1 + ω − ω2)6 = 128
If ω is the cube root of unity then find the value of `((-1 + "i"sqrt(3))/2)^18 + ((-1 - "i"sqrt(3))/2)^18`
Let α be a root of the equation 1 + x2 + x4 = 0. Then the value of α1011 + α2022 – α3033 is equal to ______.
If 1, α1, α2, ...... αn–1 are the roots of unity, then (1 + α1)(1 + α2) ...... (1 + αn–1) is equal to (when n is even) ______.
Simplify the following and express in the form a + ib.
`(3i^5 + 2i^7 + i^9)/(i^6 + 2i^8 + 3i^18)`
If w is a complex cube root of unity, show that `((a+bw+cw^2))/(c+aw+bw^2) = w^2`
If w is a complex cube root of unity, show that
`((a + bw + cw^2)) /( c + aw + bw^2 )= w^2`
If w is a complex cube root of unity, show that, `((a + bw + cw^2))/(c + aw + bw^2) = w^2`
If w is a complex cube root of unity, show that `((a + bw +cw^2))/(c +aw + bw^2) = w^2`
If w is a complex cube-root of unity, then prove the following:
(ω2 + ω − 1)3 = −8
If w is a complex cube root of unity, show that `((a+bw+cw^2))/(c+aw+bw^2) =w^2`
If w is a complex cube root of unity, show that `((a + bω + cω^2))/(c + aω + bω^2) = ω^2`
If ω is a complex cube-root of unity, then prove the following:
(ω2 + ω −1)3 = −8
Find the value of `sqrt(-3) xx sqrt(-6)`.
If w is a complex cube-root of unity, then prove the following
(w2 + w - 1)3 = - 8
If w is a complex cube-root of unity, then prove the following.
(w2 + w - 1)3 = - 8
If ω is a complex cube root of unity, show that `((a + bomega + comega^2))/(c + aomega + bomega^2)=omega^2`