Advertisements
Advertisements
प्रश्न
If , where α and β are the complex cube-roots of unity, show that xyz = a3 + b3.
उत्तर
x = a + b, y = αa + βb and z = aβ + bα
α and β are the complex cube roots of unity.
∴ α = `(-1 + isqrt3)/2` and β = `(-1 - isqrt3)/2`
∴ αβ = `((-1 + isqrt3)/2)((-1 - isqrt3)/2)`
= `((-1)^2 - (isqrt3)^2)/4`
= `(1-(-1)(3))/4` ...[∵ i2 = -1]
= `(1 + 3)/4`
= `4/4`
∴ αβ = 1
Also, α + β = `(-1 + isqrt3)/2 + (-1 - isqrt3)/2`
= `(-1 + isqrt3 -1 - isqrt3)/2`
= `-2/2`
α + β = −1
∴ xyz = (a + b)(αa + βb)(aβ + bα)
= (a + b)(αβa2 + α2ab + β2ab + αβb2)
= (a + b)[1.(a2) + (α2 +β2)ab + 1.(b2)]
= (a + b){a2 + [(α + β)2 − 2αβ]ab + b2}
= (a + b){a2 + [(−1)2 − 2(1)]ab + b2}
= (a + b)[a2 + (1 − 2)ab + b2]
= (a + b)(a2 − ab + b2)
= a3 + b3
APPEARS IN
संबंधित प्रश्न
If ω is a complex cube root of unity, show that (2 + ω + ω2)3 - (1 - 3ω + ω2)3 = 65
If `omega` is a complex cube root of unity, find the value of `(1 + omega)(1 + omega^2)(1 + omega^4)(1 + omega^8)`
If ω is a complex cube root of unity, then prove the following: (ω2 + ω - 1)3 = – 8
Find the value of ω21
Find the value of ω–105
If ω is a complex cube root of unity, show that (2 − ω)(2 − ω2) = 7
If ω is a complex cube root of unity, show that (2 + ω + ω2)3 − (1 − 3ω + ω2)3 = 65
If ω is a complex cube root of unity, show that (3 + 3ω + 5ω2)6 − (2 + 6ω + 2ω2)3 = 0
If ω is a complex cube root of unity, show that `("a" + "b"ω + "c"ω^2)/("c" + "a"ω + "b"ω^2)` = ω2
If ω is a complex cube root of unity, find the value of `ω + 1/ω`
If α and β are the complex cube root of unity, show that α2 + β2 + αβ = 0
Find the equation in cartesian coordinates of the locus of z if |z – 3| = 2
Find the equation in cartesian coordinates of the locus of z if |z − 5 + 6i| = 5
Answer the following:
If α and β are complex cube roots of unity, prove that (1 − α)(1 − β) (1 − α2)(1 − β2) = 9
If α, β, γ are the cube roots of p (p < 0), then for any x, y and z, `(xalpha + "y"beta + "z"gamma)/(xbeta + "y"gamma + "z"alpha)` = ______.
Let α be a root of the equation 1 + x2 + x4 = 0. Then the value of α1011 + α2022 – α3033 is equal to ______.
Let z = `(1 - isqrt(3))/2`, i = `sqrt(-1)`. Then the value of `21 + (z + 1/z)^3 + (z^2 + 1/z^2) + (z^3 + 1/z^3)^3 + ...... + (z^21 + 1/z^21)^3` is ______.
If 1, α1, α2, ...... αn–1 are the roots of unity, then (1 + α1)(1 + α2) ...... (1 + αn–1) is equal to (when n is even) ______.
If w is a complex cube root of unity, show that `((a + bw +cw^2))/(c +aw + bw^2) = w^2`
If w is a complex cube-root of unity, then prove the following:
(ω2 + ω − 1)3 = −8
If w is a complex cube root of unity, show that `((a + bw + cw^2))/(c+aw+bw^2) = w^2`
If ω is a complex cube root of unity, then prove the following.
(ω2 + ω −1)3 = −8
If w is a complex cube root of unity, show that `((a + bω + cω^2))/(c + aω + bω^2) = ω^2`
If ω is a complex cube-root of unity, then prove the following:
(ω2 + ω −1)3 = −8
If ω is a complex cube-root of unity, then prove the following :
(ω2 + ω − 1)3 = − 8
Find the value of `sqrt(-3) xx sqrt(-6)`.
Find the value of `sqrt(-3)xx sqrt (-6)`
If w is a complex cube root of unity, show that `((a + bw + cw^2))/(c + aw + bw^2) = w^2`
If w is a complex cube root of unity, show that `((a + bomega + comega^2))/(c + aomega + bomega^2) = w^2`
If ω is a complex cube root of unity, show that `((a + b\omega + c\omega^2))/(c + a\omega + b\omega^2) = \omega^2`
If ω is a complex cube-root of unity, then prove the following.
(ω2 + ω − 1)3 = −8