Advertisements
Advertisements
प्रश्न
Find the equation in cartesian coordinates of the locus of z if |z – 3| = 2
उत्तर
Let z = x + iy, then
|z – 3| = 2 gives
|x + iy – 3| = 2
∴ |(x – 3) + iy| = 2
∴ `sqrt((x - 3)^2 + y^2)` = 2
∴ (x – 3)2 + y2 = 4
This is the equation of the required locus.
APPEARS IN
संबंधित प्रश्न
If ω is a complex cube root of unity, find the value of `omega + 1/omega`
If α and β are the complex cube roots of unity, show that α2 + β2 + αβ = 0.
If x = a + b, y = αa + βb and z = aβ + bα, where α and β are the complex cube roots of unity, show that xyz = a3 + b3.
Find the value of ω18
Find the value of ω–105
If ω is a complex cube root of unity, show that (1 + ω − ω2)6 = 64
If ω is a complex cube root of unity, show that (2 + ω + ω2)3 − (1 − 3ω + ω2)3 = 65
If ω is a complex cube root of unity, show that `("a" + "b"ω + "c"ω^2)/("c" + "a"ω + "b"ω^2)` = ω2
If ω is a complex cube root of unity, show that (a − b) (a − bω) (a − bω2) = a3 − b3
If ω is a complex cube root of unity, find the value of ω2 + ω3 + ω4
If ω is a complex cube root of unity, find the value of (1 + ω2)3
If α and β are the complex cube root of unity, show that α2 + β2 + αβ = 0
If α and β are the complex cube root of unity, show that α4 + β4 + α−1β−1 = 0
Find the equation in cartesian coordinates of the locus of z if |z| = 10
Find the equation in cartesian coordinates of the locus of z if |z + 8| = |z – 4|
Select the correct answer from the given alternatives:
If ω is a complex cube root of unity, then the value of ω99+ ω100 + ω101 is :
Answer the following:
If ω is a complex cube root of unity, prove that (1 − ω + ω2)6 +(1 + ω − ω2)6 = 128
If ω is the cube root of unity then find the value of `((-1 + "i"sqrt(3))/2)^18 + ((-1 - "i"sqrt(3))/2)^18`
Which of the following is the third root of `(1 + i)/sqrt2`?
If (1 + ω2)m = (1 + ω4)m and ω is an imaginary cube root of unity, then least positive integral value of m is ______.
Let z = `(1 - isqrt(3))/2`, i = `sqrt(-1)`. Then the value of `21 + (z + 1/z)^3 + (z^2 + 1/z^2) + (z^3 + 1/z^3)^3 + ...... + (z^21 + 1/z^21)^3` is ______.
The value of the expression 1.(2 – ω) + (2 – ω2) + 2.(3 – ω)(3 – ω2) + ....... + (n – 1)(n – ω)(n – ω2), where ω is an imaginary cube root of unity is ______.
Simplify the following and express in the form a + ib.
`(3i^5 + 2i^7 + i^9)/(i^6 + 2i^8 + 3i^18)`
If w is a complex cube root of unity, show that `((a+bw+cw^2))/(c+aw+bw^2) = w^2`
If w is a complex cube root of unity, show that `((a+bw+cw^2))/(c+aw+bw^2) =w^2`
If ω is a complex cube root of unity, then prove the following.
(ω2 + ω −1)3 = −8
Find the value of `sqrt(-3)xx sqrt (-6)`
If w is a complex cube root of unity, show that `((a+bw+cw^2))/(c+aw+bw^2) = w^2`
If w is a complex cube root of unity, show that `((a+bw+cw^2))/(c+aw+bw^2)=w^2`
If w is a complex cube root of unity, show that `((a + bomega + comega^2))/(c + aomega + bomega^2) = w^2`
If ω is a complex cube root of unity, show that `((a + bomega + comega^2))/(c + aomega + bomega^2)=omega^2`
If ω is a complex cube-root of unity, then prove the following.
(ω2 + ω − 1)3 = −8