हिंदी

Find the equation in cartesian coordinates of the locus of z if |z + 8| = |z – 4| - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Find the equation in cartesian coordinates of the locus of z if |z + 8| = |z – 4|

योग

उत्तर

Let z = x + iy, then

|z + 8| = |z – 4| gives

|x + iy + 8| = |x + iy –  4|

∴ |(x + 8) + iy| = |(x –  4) + iy|

∴ `sqrt((x + 8)^2 + y^2) = sqrt((x - 4)^2 + y^2)`

∴ (x + 8)2 + y2 = (x – 4)2 + y2

∴ x2 + 16x + 64 + y2 = x2 – 8x + 16 + y2

∴ 24x + 48 = 0

∴ x + 2 = 0

This is the equation of the required locus.

shaalaa.com
Cube Root of Unity
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 1: Complex Numbers - Exercise 1.4 [पृष्ठ २०]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 11 Standard Maharashtra State Board
अध्याय 1 Complex Numbers
Exercise 1.4 | Q 6. (iv) | पृष्ठ २०

संबंधित प्रश्न

If ω is a complex cube root of unity, show that `(("a" + "b"omega + "c"omega^2))/("c" + "a"omega + "b"omega^2) = omega^2`.


If `omega` is a complex cube root of unity, find the value of `(1 + omega)(1 + omega^2)(1 + omega^4)(1 + omega^8)`


If α and β are the complex cube roots of unity, show that α2 + β2 + αβ = 0.


Find the value of ω21


If ω is a complex cube root of unity, show that (2 − ω)(2 − ω2) = 7


If ω is a complex cube root of unity, show that (1 + ω)3 − (1 + ω2)3 = 0


If ω is a complex cube root of unity, show that (3 + 3ω + 5ω2)6 − (2 + 6ω + 2ω2)3 = 0


If ω is a complex cube root of unity, show that `("a" + "b"ω + "c"ω^2)/("c" + "a"ω + "b"ω^2)` = ω2


If ω is a complex cube root of unity, show that (a + b) + (aω + bω2) + (aω2 + bω) = 0


If ω is a complex cube root of unity, show that (a − b) (a − bω) (a − bω2) = a3 − b3


If ω is a complex cube root of unity, find the value of ω2 + ω3 + ω4


If ω is a complex cube root of unity, find the value of (1 + ω2)3


If ω is a complex cube root of unity, find the value of (1 − ω − ω2)3 + (1 − ω + ω2)3


If ω is a complex cube root of unity, find the value of (1 + ω)(1 + ω2)(1 + ω4)(1 + ω8)


If , where α and β are the complex cube-roots of unity, show that xyz = a3 + b3.


Find the equation in cartesian coordinates of the locus of z if |z – 3| = 2


Find the equation in cartesian coordinates of the locus of z if |z – 2 – 2i| = |z + 2 + 2i|


Find the equation in cartesian coordinates of the locus of z if `|("z" + 3"i")/("z" - 6"i")|` = 1


If ω(≠1) is a cube root of unity and (1 + ω)7 = A + Bω, then A and B are respectively the numbers ______.


Answer the following:

If α and β are complex cube roots of unity, prove that (1 − α)(1 − β) (1 − α2)(1 − β2) = 9


If α, β, γ are the cube roots of p (p < 0), then for any x, y and z, `(xalpha + "y"beta + "z"gamma)/(xbeta + "y"gamma + "z"alpha)` = ______.


The value of the expression 1.(2 – ω) + (2 – ω2) + 2.(3 – ω)(3 – ω2) + ....... + (n – 1)(n – ω)(n – ω2), where ω is an imaginary cube root of unity is ______.


If w is a complex cube root of unity, show that `((a+bw+cw^2))/(c+aw+bw^2) = w^2`


If w is a complex cube root of unity, show that, `((a + bw + cw^2))/(c + aw + bw^2) = w^2`


If w is a complex cube-root of unity, then prove the following:

2 + ω − 1)3 = −8


If w is a complex cube-root of unity, then prove the following

(w2 + w - 1)3 = - 8


If w is a complex cube root of unity, show that `((a+bw+cw^2))/(c+aw+bw^2) = w^2`


If w is a complex cube root of unity, show that `((a+bw+cw^2))/(c+aw+bw^2)=w^2`


If w is a complex cube-root of unity, then prove the following. 

(w+ w - 1)= - 8


If w is a complex cube root of unity, show that `((a + bomega + comega^2))/(c + aomega + bomega^2) = w^2`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×