Advertisements
Advertisements
प्रश्न
Find the equation in cartesian coordinates of the locus of z if |z + 8| = |z – 4|
उत्तर
Let z = x + iy, then
|z + 8| = |z – 4| gives
|x + iy + 8| = |x + iy – 4|
∴ |(x + 8) + iy| = |(x – 4) + iy|
∴ `sqrt((x + 8)^2 + y^2) = sqrt((x - 4)^2 + y^2)`
∴ (x + 8)2 + y2 = (x – 4)2 + y2
∴ x2 + 16x + 64 + y2 = x2 – 8x + 16 + y2
∴ 24x + 48 = 0
∴ x + 2 = 0
This is the equation of the required locus.
APPEARS IN
संबंधित प्रश्न
If ω is a complex cube root of unity, show that `(("a" + "b"omega + "c"omega^2))/("c" + "a"omega + "b"omega^2) = omega^2`.
If `omega` is a complex cube root of unity, find the value of `(1 + omega)(1 + omega^2)(1 + omega^4)(1 + omega^8)`
If α and β are the complex cube roots of unity, show that α2 + β2 + αβ = 0.
Find the value of ω21
If ω is a complex cube root of unity, show that (2 − ω)(2 − ω2) = 7
If ω is a complex cube root of unity, show that (1 + ω)3 − (1 + ω2)3 = 0
If ω is a complex cube root of unity, show that (3 + 3ω + 5ω2)6 − (2 + 6ω + 2ω2)3 = 0
If ω is a complex cube root of unity, show that `("a" + "b"ω + "c"ω^2)/("c" + "a"ω + "b"ω^2)` = ω2
If ω is a complex cube root of unity, show that (a + b) + (aω + bω2) + (aω2 + bω) = 0
If ω is a complex cube root of unity, show that (a − b) (a − bω) (a − bω2) = a3 − b3
If ω is a complex cube root of unity, find the value of ω2 + ω3 + ω4
If ω is a complex cube root of unity, find the value of (1 + ω2)3
If ω is a complex cube root of unity, find the value of (1 − ω − ω2)3 + (1 − ω + ω2)3
If ω is a complex cube root of unity, find the value of (1 + ω)(1 + ω2)(1 + ω4)(1 + ω8)
If , where α and β are the complex cube-roots of unity, show that xyz = a3 + b3.
Find the equation in cartesian coordinates of the locus of z if |z – 3| = 2
Find the equation in cartesian coordinates of the locus of z if |z – 2 – 2i| = |z + 2 + 2i|
Find the equation in cartesian coordinates of the locus of z if `|("z" + 3"i")/("z" - 6"i")|` = 1
If ω(≠1) is a cube root of unity and (1 + ω)7 = A + Bω, then A and B are respectively the numbers ______.
Answer the following:
If α and β are complex cube roots of unity, prove that (1 − α)(1 − β) (1 − α2)(1 − β2) = 9
If α, β, γ are the cube roots of p (p < 0), then for any x, y and z, `(xalpha + "y"beta + "z"gamma)/(xbeta + "y"gamma + "z"alpha)` = ______.
The value of the expression 1.(2 – ω) + (2 – ω2) + 2.(3 – ω)(3 – ω2) + ....... + (n – 1)(n – ω)(n – ω2), where ω is an imaginary cube root of unity is ______.
If w is a complex cube root of unity, show that `((a+bw+cw^2))/(c+aw+bw^2) = w^2`
If w is a complex cube root of unity, show that, `((a + bw + cw^2))/(c + aw + bw^2) = w^2`
If w is a complex cube-root of unity, then prove the following:
(ω2 + ω − 1)3 = −8
If w is a complex cube-root of unity, then prove the following
(w2 + w - 1)3 = - 8
If w is a complex cube root of unity, show that `((a+bw+cw^2))/(c+aw+bw^2) = w^2`
If w is a complex cube root of unity, show that `((a+bw+cw^2))/(c+aw+bw^2)=w^2`
If w is a complex cube-root of unity, then prove the following.
(w2 + w - 1)3 = - 8
If w is a complex cube root of unity, show that `((a + bomega + comega^2))/(c + aomega + bomega^2) = w^2`