हिंदी

If ω is a complex cube root of unity, find the value of (1 + ω)(1 + ω2)(1 + ω4)(1 + ω8) - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

If ω is a complex cube root of unity, find the value of (1 + ω)(1 + ω2)(1 + ω4)(1 + ω8)

योग

उत्तर

ω is the complex cube root of unity

∴ ω3 = 1 and 1 + ω + ω2 = 0

Also, 1 + ω2 = – ω, 1 + ω = – ω2 and ω + ω2 = – 1

(1 + ω)(1 + ω2)(1 + ω4)(1 + ω8)

= (1 + ω)(1 + ω2)(1 + ω)(1 + ω2)  ...[∵ ω3 = 1, ∴ ω4 = ω]

= (– ω2)(– ω)(– ω2)(– ω)

= ω6

= (ω3)2

= (1)2

= 1

shaalaa.com
Cube Root of Unity
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 1: Complex Numbers - Exercise 1.4 [पृष्ठ २०]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 11 Standard Maharashtra State Board
अध्याय 1 Complex Numbers
Exercise 1.4 | Q 3. (v) | पृष्ठ २०

संबंधित प्रश्न

If ω is a complex cube root of unity, show that (2 + ω + ω2)3 - (1 - 3ω + ω2)3 = 65


If ω is a complex cube root of unity, show that `(("a" + "b"omega + "c"omega^2))/("c" + "a"omega + "b"omega^2) = omega^2`.


If ω is a complex cube root of unity, find the value of `omega + 1/omega`


If ω is a complex cube root of unity, find the value of ω2 + ω3 + ω4.


If ω is a complex cube root of unity, find the value of (1 - ω - ω2)3 + (1 - ω + ω2)3


If `omega` is a complex cube root of unity, find the value of `(1 + omega)(1 + omega^2)(1 + omega^4)(1 + omega^8)`


If ω is a complex cube root of unity, then prove the following:  (a + b) + (aω + bω2) + (aω2 + bω) = 0.


Find the value of ω21


Find the value of ω–105


If ω is a complex cube root of unity, show that (2 − ω)(2 − ω2) = 7


If ω is a complex cube root of unity, show that (1 + ω)3 − (1 + ω2)3 = 0


If ω is a complex cube root of unity, show that (a + b) + (aω + bω2) + (aω2 + bω) = 0


If α and β are the complex cube root of unity, show that α2 + β2 + αβ = 0


Find the equation in cartesian coordinates of the locus of z if |z − 5 + 6i| = 5


Find the equation in cartesian coordinates of the locus of z if |z + 8| = |z – 4|


If ω is the cube root of unity then find the value of `((-1 + "i"sqrt(3))/2)^18 + ((-1 - "i"sqrt(3))/2)^18`


If (1 + ω2)m = (1 + ω4)m and ω is an imaginary cube root of unity, then least positive integral value of m is ______.


Let α be a root of the equation 1 + x2 + x4 = 0. Then the value of α1011 + α2022 – α3033 is equal to ______.


The value of the expression 1.(2 – ω) + (2 – ω2) + 2.(3 – ω)(3 – ω2) + ....... + (n – 1)(n – ω)(n – ω2), where ω is an imaginary cube root of unity is ______.


If the cube roots of the unity are 1, ω and ω2, then the roots of the equation (x – 1)3 + 8 = 0, are ______.


Simplify the following and express in the form a + ib.

`(3i^5 + 2i^7 + i^9)/(i^6 + 2i^8 + 3i^18)`


If w is a complex cube root of unity, show that `((a+bw+cw^2))/(c+aw+bw^2) = w^2`


If w is a complex cube root of unity, show that

`((a + bw + cw^2)) /( c + aw + bw^2 )= w^2`


If w is a complex cube root of unity, show that `((a + bw +cw^2))/(c +aw + bw^2) = w^2`


If w is a complex cube-root of unity, then prove the following:

2 + ω − 1)3 = −8


If ω is a complex cube root of unity, then prove the following.

2 + ω −1)3 = −8


If ω is a complex cube-root of unity, then prove the following:

(a + b) + (aω + bω2) + (aω2 + bω) = 0


If ω is a complex cube-root of unity, then prove the following :

2 + ω − 1)3 = − 8


Find the value of `sqrt(-3) xx sqrt(-6)`.


If w is a complex cube-root of unity, then prove the following

(w2 + w - 1)3 = - 8


If ω is a complex cube-root of unity, then prove the following:

2 + ω − 1)3 = −8


 Find the value of `sqrt(-3)xx sqrt (-6)`


If w is a complex cube root of unity, show that `((a+bw+cw^2))/(c+aw+bw^2) = w^2`


If w is a complex cube root of unity, show that `((a + bw + cw^2))/(c + aw + bw^2) = w^2`


If ω is a complex cube root of unity, show that `((a + b\omega + c\omega^2))/(c + a\omega + b\omega^2) = \omega^2`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×