हिंदी

If ω is a complex cube root of unity, show that (2 + ω + ω2)3 - (1 - 3ω + ω2)3 = 65 - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

If ω is a complex cube root of unity, show that (2 + ω + ω2)3 - (1 - 3ω + ω2)3 = 65

योग

उत्तर

ω is a complex cube root of unity.

∴ ω3 = 1 and 1 + ω + ω2 = 0

Also, 1 + ω2 = - ω, 1 + ω = - ω2 and ω + ω2 = - 1

L.H.S. = (2 + ω + ω2)3 - (1 - 3ω + ω2)3 

= [(2 + (ω + ω2)]3 - [(- 3ω + (1 + ω2)]3 

= (2 - 1)3 - (- 3ω - ω)3

= 13 - (- 4ω)3

= 1 + 64ω3

= 1 + 64(1) = 65

= R.H.S.

shaalaa.com
Cube Root of Unity
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 3: Complex Numbers - EXERCISE 3.3 [पृष्ठ ४२]

APPEARS IN

बालभारती Mathematics and Statistics 1 (Commerce) [English] 11 Standard Maharashtra State Board
अध्याय 3 Complex Numbers
EXERCISE 3.3 | Q 1) ii) | पृष्ठ ४२

संबंधित प्रश्न

If `omega` is a complex cube root of unity, show that `(2 - omega)(2 - omega^2)` = 7


If ω is a complex cube root of unity, show that `(("a" + "b"omega + "c"omega^2))/("c" + "a"omega + "b"omega^2) = omega^2`.


Find the value of ω–30


If ω is a complex cube root of unity, show that (2 − ω)(2 − ω2) = 7


If ω is a complex cube root of unity, show that (1 + ω − ω2)6 = 64


If ω is a complex cube root of unity, find the value of (1 + ω)(1 + ω2)(1 + ω4)(1 + ω8)


If α and β are the complex cube root of unity, show that α2 + β2 + αβ = 0


If , where α and β are the complex cube-roots of unity, show that xyz = a3 + b3.


Find the equation in cartesian coordinates of the locus of z if `|("z" + 3"i")/("z" - 6"i")|` = 1


If ω(≠1) is a cube root of unity and (1 + ω)7 = A + Bω, then A and B are respectively the numbers ______.


If α, β, γ are the cube roots of p (p < 0), then for any x, y and z, `(xalpha + "y"beta + "z"gamma)/(xbeta + "y"gamma + "z"alpha)` = ______.


If w is a complex cube root of unity, show that `((a+bw+cw^2))/(c+aw+bw^2) = w^2`


If w is a complex cube root of unity, show that `((a + bw + cw^2))/(c+aw+bw^2) = w^2`


If w is a complex cube root of unity, show that `((a + bω + cω^2))/(c + aω + bω^2) = ω^2`


If ω is a complex cube-root of unity, then prove the following:

2 + ω − 1)3 = −8


If w is a complex cube root of unity, show that `((a + bw + cw^2))/(c + aw + bw^2) = w^2`


If w is a complex cube root of unity, show that `((a + bomega + comega^2))/(c + aomega + bomega^2) = w^2`


If ω is a complex cube root of unity, show that `((a + bomega + comega^2))/(c + aomega + bomega^2)=omega^2`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×