Advertisements
Advertisements
प्रश्न
If `omega` is a complex cube root of unity, show that `(2 - omega)(2 - omega^2)` = 7
उत्तर
`omega` is a complex cube root of unity.
∴ `omega^3 = 1 and 1 + omega + omega^2` = 0
Also, `1 + omega^2 = -omega, 1 + omega = - omega^2 and omega + omega^2` = – 1
L.H.S. = `(2 - omega)(2 - omega^2)`
= `4 - 2omega^2 - 2omega + omega^3`
= `4 - 2(omega^2 + omega) + 1`
= 4 – 2(– 1) + 1
= 4 + 2 + 1
= 7
= R.H.S.
APPEARS IN
संबंधित प्रश्न
If ω is a complex cube root of unity, find the value of `omega + 1/omega`
If ω is a complex cube root of unity, find the value of (1 - ω - ω2)3 + (1 - ω + ω2)3
Find the value of ω–30
If ω is a complex cube root of unity, show that (1 + ω)3 − (1 + ω2)3 = 0
If ω is a complex cube root of unity, show that (3 + 3ω + 5ω2)6 − (2 + 6ω + 2ω2)3 = 0
If ω is a complex cube root of unity, find the value of `ω + 1/ω`
If ω is a complex cube root of unity, find the value of ω2 + ω3 + ω4
If ω is a complex cube root of unity, find the value of (1 + ω)(1 + ω2)(1 + ω4)(1 + ω8)
Find the equation in cartesian coordinates of the locus of z if |z – 3| = 2
Find the equation in cartesian coordinates of the locus of z if |z – 2 – 2i| = |z + 2 + 2i|
Select the correct answer from the given alternatives:
If ω is a complex cube root of unity, then the value of ω99+ ω100 + ω101 is :
If w is a complex cube root of unity, show that `((a + bw +cw^2))/(c +aw + bw^2) = w^2`
If w is a complex cube root of unity, show that `((a+bw+cw^2))/(c+aw+bw^2) =w^2`
If w is a complex cube root of unity, show that `((a + bω + cω^2))/(c + aω + bω^2) = ω^2`
If ω is a complex cube-root of unity, then prove the following:
(ω2 + ω −1)3 = −8
Find the value of `sqrt(-3) xx sqrt(-6)`.
If ω is a complex cube root of unity, show that `((a + b\omega + c\omega^2))/(c + a\omega + b\omega^2) = \omega^2`