Advertisements
Advertisements
प्रश्न
If `omega` is a complex cube root of unity, show that `(2 - omega)(2 - omega^2)` = 7
उत्तर
`omega` is a complex cube root of unity.
∴ `omega^3 = 1 and 1 + omega + omega^2` = 0
Also, `1 + omega^2 = -omega, 1 + omega = - omega^2 and omega + omega^2` = – 1
L.H.S. = `(2 - omega)(2 - omega^2)`
= `4 - 2omega^2 - 2omega + omega^3`
= `4 - 2(omega^2 + omega) + 1`
= 4 – 2(– 1) + 1
= 4 + 2 + 1
= 7
= R.H.S.
APPEARS IN
संबंधित प्रश्न
If ω is a complex cube root of unity, find the value of (1 - ω - ω2)3 + (1 - ω + ω2)3
If x = a + b, y = αa + βb and z = aβ + bα, where α and β are the complex cube roots of unity, show that xyz = a3 + b3.
If ω is a complex cube root of unity, show that (3 + 3ω + 5ω2)6 − (2 + 6ω + 2ω2)3 = 0
If ω is a complex cube root of unity, show that (a + b) + (aω + bω2) + (aω2 + bω) = 0
If ω is a complex cube root of unity, find the value of (1 + ω)(1 + ω2)(1 + ω4)(1 + ω8)
Find the equation in cartesian coordinates of the locus of z if |z – 3| = 2
Find the equation in cartesian coordinates of the locus of z if |z + 8| = |z – 4|
Find the equation in cartesian coordinates of the locus of z if `|("z" + 3"i")/("z" - 6"i")|` = 1
Answer the following:
If ω is a complex cube root of unity, prove that (1 − ω + ω2)6 +(1 + ω − ω2)6 = 128
If ω is the cube root of unity then find the value of `((-1 + "i"sqrt(3))/2)^18 + ((-1 - "i"sqrt(3))/2)^18`
If 1, α1, α2, ...... αn–1 are the roots of unity, then (1 + α1)(1 + α2) ...... (1 + αn–1) is equal to (when n is even) ______.
The value of the expression 1.(2 – ω) + (2 – ω2) + 2.(3 – ω)(3 – ω2) + ....... + (n – 1)(n – ω)(n – ω2), where ω is an imaginary cube root of unity is ______.
If w is a complex cube root of unity, show that `((a+bw+cw^2))/(c+aw+bw^2) = w^2`
If w is a complex cube root of unity, show that `((a + bw + cw^2))/(c+aw+bw^2) = w^2`
If w is a complex cube root of unity, show that `((a+bw+cw^2))/(c+aw+bw^2) =w^2`
If ω is a complex cube-root of unity, then prove the following:
(ω2 + ω − 1)3 = −8
If w is a complex cube root of unity, show that `((a + bw + cw^2))/(c + aw + bw^2) = w^2`
If w is a complex cube root of unity, show that `((a+bw+cw^2))/(c+aw+bw^2)=w^2`
If w is a complex cube-root of unity, then prove the following.
(w2 + w - 1)3 = - 8