मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता ११ वी

If ω is the cube root of unity then find the value of ii(-1+i32)18+(-1-i32)18 - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

If ω is the cube root of unity then find the value of `((-1 + "i"sqrt(3))/2)^18 + ((-1 - "i"sqrt(3))/2)^18`

बेरीज

उत्तर १

`((-1 + "i"sqrt(3))/2)^3`

`=((-1)^3 + 3(-1)^2("i"sqrt(3)) + 3(-1)("i"sqrt(3))^2 + ("i"sqrt(3))^3)/8`

= `(-1 + 3(1)("i"sqrt(3)) - 3(3"i"^2) + 3sqrt(3)"i"^3)/8`

= `(-1 + 3sqrt(3)"i" + 9 - 3sqrt(3)"i")/8`  ...[∵ i2 = – 1, i3 = – i]

= `8/8`

= 1                                 .......(1)

Also, `((-1 - "i"sqrt(3))/2)^3`

`=((-1)^3 - 3(-1)^2("i"sqrt(3)) + 3(-1)("i"sqrt(3))^2 - ("i"sqrt(3))^3)/8`

= `(-1 - 3(1)("i"sqrt(3)) - 3(3"i"^2) - 3sqrt(3)"i"^3)/8`

= `(-1 - 3sqrt(3)"i" + 9 + 3sqrt(3)"i")/8`  ...[∵ i2 = – 1, i3 = – i]

= `8/8`

= 1                                 .........(2)

∴ `((-1 + "i"sqrt(3))/2)^18 + [((-1 - "i"sqrt(3))/2)^2]^18`

= `[((-1 + "i"sqrt(3))/2)^3]^6 + [((-1 - "i"sqrt(3))/2)^36]`    

= `[((-1 + "i"sqrt(3))/2)^3]^6 + [((-1 - "i"sqrt(3))/2)^3]^12`

= (1)6 + (1)12                    ........[By (1) and (2)]

= 1 + 1

= 2

shaalaa.com

उत्तर २

If ω is the complex cube root of unity, then

ω3 = 1, ω = `(-1 + isqrt3)/2` and ω2 = `(-1 - isqrt3)/2`

Consider,

`((-1 + isqrt3)/2)^18` + `((-1 - isqrt3)/2)^18`

Given Expression = ω18 + (ω2)18

= ω18 + ω36

= (ω3)6 + (ω3)12

= (1)6 + (1)12

= 1 + 1

= 2

shaalaa.com
Cube Root of Unity
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 1: Complex Numbers - Miscellaneous Exercise 1.2 [पृष्ठ २२]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 11 Standard Maharashtra State Board
पाठ 1 Complex Numbers
Miscellaneous Exercise 1.2 | Q II. 20 | पृष्ठ २२

संबंधित प्रश्‍न

If `omega` is a complex cube root of unity, show that `(2 - omega)(2 - omega^2)` = 7


If ω is a complex cube root of unity, then prove the following: (ω2 + ω - 1)3 = – 8


Find the value of ω–30


If ω is a complex cube root of unity, show that (1 + ω − ω2)6 = 64


If ω is a complex cube root of unity, show that (1 + ω)3 − (1 + ω2)3 = 0


If ω is a complex cube root of unity, show that (3 + 3ω + 5ω2)6 − (2 + 6ω + 2ω2)3 = 0


If ω is a complex cube root of unity, show that (a − b) (a − bω) (a − bω2) = a3 − b3


If ω is a complex cube root of unity, find the value of (1 + ω)(1 + ω2)(1 + ω4)(1 + ω8)


If α and β are the complex cube root of unity, show that α4 + β4 + α−1β−1 = 0


Find the equation in cartesian coordinates of the locus of z if |z − 5 + 6i| = 5


Find the equation in cartesian coordinates of the locus of z if |z + 8| = |z – 4|


Find the equation in cartesian coordinates of the locus of z if `|("z" + 3"i")/("z" - 6"i")|` = 1


If (1 + ω2)m = (1 + ω4)m and ω is an imaginary cube root of unity, then least positive integral value of m is ______.


If 1, α1, α2, ...... αn–1 are the roots of unity, then (1 + α1)(1 + α2) ...... (1 + αn–1) is equal to (when n is even) ______.


If the cube roots of the unity are 1, ω and ω2, then the roots of the equation (x – 1)3 + 8 = 0, are ______.


If w is a complex cube root of unity, show that `((a+bw+cw^2))/(c+aw+bw^2) = w^2`


If w is a complex cube root of unity, show that, `((a + bw + cw^2))/(c + aw + bw^2) = w^2`


If w is a complex cube root of unity, show that `((a + bw +cw^2))/(c +aw + bw^2) = w^2`


If w is a complex cube root of unity, show that `((a + bw + cw^2))/(c+aw+bw^2) = w^2`


If ω is a complex cube root of unity, then prove the following.

2 + ω −1)3 = −8


If ω is a complex cube-root of unity, then prove the following:

2 + ω −1)3 = −8


If ω is a complex cube-root of unity, then prove the following :

2 + ω − 1)3 = − 8


If ω is a complex cube-root of unity, then prove the following:

2 + ω − 1)3 = −8


If w is a complex cube root of unity, show that `((a+bw+cw^2))/(c+aw+bw^2) = w^2`


If w is a complex cube root of unity, show that `((a + bw + cw^2))/(c + aw + bw^2) = w^2`


If w is a complex cube root of unity, show that `((a+bw+cw^2))/(c+aw+bw^2)=w^2`


If ω is a complex cube root of unity, show that `((a + bomega + comega^2))/(c + aomega + bomega^2)=omega^2`


If ω is a complex cube root of unity, show that `((a + b\omega + c\omega^2))/(c + a\omega + b\omega^2) = \omega^2`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×