Advertisements
Advertisements
प्रश्न
If ω is a complex cube root of unity, then prove the following: (ω2 + ω - 1)3 = – 8
उत्तर
ω is a complex cube root of unity
∴ ω3 = 1 and 1 + ω + ω2 = 0
Also, 1 + ω2 = - ω, 1 + ω = - ω2
and ω + ω2 = – 1
L.H.S. = (ω2 + ω - 1)3
= (– 1 – 1)3
= (– 2)3
= – 8 = R.H.S.
APPEARS IN
संबंधित प्रश्न
If ω is a complex cube root of unity, find the value of `omega + 1/omega`
If x = a + b, y = αa + βb and z = aβ + bα, where α and β are the complex cube roots of unity, show that xyz = a3 + b3.
If ω is a complex cube root of unity, then prove the following: (a + b) + (aω + bω2) + (aω2 + bω) = 0.
Find the value of ω–30
If ω is a complex cube root of unity, find the value of (1 + ω2)3
If , where α and β are the complex cube-roots of unity, show that xyz = a3 + b3.
Find the equation in cartesian coordinates of the locus of z if |z – 3| = 2
Find the equation in cartesian coordinates of the locus of z if |z – 2 – 2i| = |z + 2 + 2i|
If ω(≠1) is a cube root of unity and (1 + ω)7 = A + Bω, then A and B are respectively the numbers ______.
Answer the following:
If α and β are complex cube roots of unity, prove that (1 − α)(1 − β) (1 − α2)(1 − β2) = 9
Which of the following is the third root of `(1 + i)/sqrt2`?
Let α be a root of the equation 1 + x2 + x4 = 0. Then the value of α1011 + α2022 – α3033 is equal to ______.
If 1, α1, α2, ...... αn–1 are the roots of unity, then (1 + α1)(1 + α2) ...... (1 + αn–1) is equal to (when n is even) ______.
If w is a complex cube root of unity, show that, `((a + bw + cw^2))/(c + aw + bw^2) = w^2`
If w is a complex cube root of unity, show that `((a+bw+cw^2))/(c+aw+bw^2) =w^2`
If ω is a complex cube root of unity, then prove the following.
(ω2 + ω −1)3 = −8
If ω is a complex cube-root of unity, then prove the following:
(ω2 + ω −1)3 = −8
Find the value of `sqrt(-3) xx sqrt(-6)`.
If ω is a complex cube root of unity, show that `((a + bomega + comega^2))/(c + aomega + bomega^2)=omega^2`