मराठी

If ω is a complex cube root of unity, then prove the following: (a + b) + (aω + bω2) + (aω2 + bω) = 0. - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

If ω is a complex cube root of unity, then prove the following:  (a + b) + (aω + bω2) + (aω2 + bω) = 0.

बेरीज

उत्तर

ω is a complex cube root of unity. 

∴ ω3 = 1 and 1 + ω + ω2 = 0

Also, 1 + ω2 = - ω, 1 + ω = - ω2 
and ω + ω2 = – 1

L.H.S. = (a + b) + (aω + bω2) + (aω2 + bω)

= (a + aω + aω2) + (b + bω + bω2)

= a(1 + ω + ω2) + b(1 + ω + ω2)

= a(0) + b(0)
= 0 = R.H.S.

shaalaa.com
Cube Root of Unity
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 3: Complex Numbers - EXERCISE 3.3 [पृष्ठ ४२]

APPEARS IN

बालभारती Mathematics and Statistics 1 (Commerce) [English] 11 Standard Maharashtra State Board
पाठ 3 Complex Numbers
EXERCISE 3.3 | Q 5) ii) | पृष्ठ ४२

संबंधित प्रश्‍न

If ω is a complex cube root of unity, find the value of (1 - ω - ω2)3 + (1 - ω + ω2)3


If `omega` is a complex cube root of unity, find the value of `(1 + omega)(1 + omega^2)(1 + omega^4)(1 + omega^8)`


If ω is a complex cube root of unity, then prove the following: (ω2 + ω - 1)3 = – 8


If ω is a complex cube root of unity, show that (a + b) + (aω + bω2) + (aω2 + bω) = 0


If ω is a complex cube root of unity, show that (a − b) (a − bω) (a − bω2) = a3 − b3


If α and β are the complex cube root of unity, show that α4 + β4 + α−1β−1 = 0


If ω(≠1) is a cube root of unity and (1 + ω)7 = A + Bω, then A and B are respectively the numbers ______.


Answer the following:

If α and β are complex cube roots of unity, prove that (1 − α)(1 − β) (1 − α2)(1 − β2) = 9


Which of the following is the third root of `(1 + i)/sqrt2`? 


If (1 + ω2)m = (1 + ω4)m and ω is an imaginary cube root of unity, then least positive integral value of m is ______.


If w is a complex cube root of unity, show that `((a + bω + cω^2))/(c + aω + bω^2) = ω^2`


If ω is a complex cube-root of unity, then prove the following:

2 + ω −1)3 = −8


Find the value of `sqrt(-3) xx sqrt(-6)`.


If w is a complex cube-root of unity, then prove the following

(w2 + w - 1)3 = - 8


If w is a complex cube root of unity, show that `((a+bw+cw^2))/(c+aw+bw^2) = w^2`


If w is a complex cube root of unity, show that `((a + bomega + comega^2))/(c + aomega + bomega^2) = w^2`


If ω is a complex cube root of unity, show that `((a + bomega + comega^2))/(c + aomega + bomega^2)=omega^2`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×