Advertisements
Advertisements
प्रश्न
If ω(≠1) is a cube root of unity and (1 + ω)7 = A + Bω, then A and B are respectively the numbers ______.
पर्याय
0, 1
1, 1
1, 0
−1, 1
उत्तर
If ω(≠1) is a cube root of unity and (1 + ω)7 = A + Bω, then A and B are respectively the numbers 1, 1.
Explanation:
ω is a cube root of unity
⇒ 1 + ω + ω2 = 0
⇒ 1 + ω = – ω2
⇒ (1 + ω)7 = (– ω2)7
= – ω14
= – ω12 × ω2
= – ω2
= 1 + ω
= A + ω.B
A = 1, B = 1
APPEARS IN
संबंधित प्रश्न
If `omega` is a complex cube root of unity, show that `(2 - omega)(2 - omega^2)` = 7
If ω is a complex cube root of unity, show that (2 + ω + ω2)3 - (1 - 3ω + ω2)3 = 65
If ω is a complex cube root of unity, find the value of ω2 + ω3 + ω4.
If ω is a complex cube root of unity, find the value of (1 + ω2)3
If ω is a complex cube root of unity, find the value of (1 - ω - ω2)3 + (1 - ω + ω2)3
If x = a + b, y = αa + βb and z = aβ + bα, where α and β are the complex cube roots of unity, show that xyz = a3 + b3.
If ω is a complex cube root of unity, then prove the following: (ω2 + ω - 1)3 = – 8
Find the value of ω21
Find the value of ω–30
If ω is a complex cube root of unity, show that (3 + 3ω + 5ω2)6 − (2 + 6ω + 2ω2)3 = 0
If ω is a complex cube root of unity, show that `("a" + "b"ω + "c"ω^2)/("c" + "a"ω + "b"ω^2)` = ω2
If ω is a complex cube root of unity, show that (a + b) + (aω + bω2) + (aω2 + bω) = 0
If α and β are the complex cube root of unity, show that α4 + β4 + α−1β−1 = 0
Find the equation in cartesian coordinates of the locus of z if |z – 3| = 2
Find the equation in cartesian coordinates of the locus of z if |z − 5 + 6i| = 5
Find the equation in cartesian coordinates of the locus of z if |z + 8| = |z – 4|
Select the correct answer from the given alternatives:
If ω is a complex cube root of unity, then the value of ω99+ ω100 + ω101 is :
If (1 + ω2)m = (1 + ω4)m and ω is an imaginary cube root of unity, then least positive integral value of m is ______.
Let z = `(1 - isqrt(3))/2`, i = `sqrt(-1)`. Then the value of `21 + (z + 1/z)^3 + (z^2 + 1/z^2) + (z^3 + 1/z^3)^3 + ...... + (z^21 + 1/z^21)^3` is ______.
Simplify the following and express in the form a + ib.
`(3i^5 + 2i^7 + i^9)/(i^6 + 2i^8 + 3i^18)`
If w is a complex cube root of unity, show that
`((a + bw + cw^2)) /( c + aw + bw^2 )= w^2`
If w is a complex cube root of unity, show that, `((a + bw + cw^2))/(c + aw + bw^2) = w^2`
If w is a complex cube root of unity, show that `((a + bw +cw^2))/(c +aw + bw^2) = w^2`
If w is a complex cube root of unity, show that `((a + bw + cw^2))/(c+aw+bw^2) = w^2`
If ω is a complex cube root of unity, then prove the following.
(ω2 + ω −1)3 = −8
If w is a complex cube root of unity, show that `((a + bω + cω^2))/(c + aω + bω^2) = ω^2`
If ω is a complex cube-root of unity, then prove the following:
(ω2 + ω −1)3 = −8
If ω is a complex cube-root of unity, then prove the following :
(ω2 + ω − 1)3 = − 8
Find the value of `sqrt(-3) xx sqrt(-6)`.
If ω is a complex cube-root of unity, then prove the following:
(ω2 + ω − 1)3 = −8
If w is a complex cube root of unity, show that `((a+bw+cw^2))/(c+aw+bw^2)=w^2`
If w is a complex cube-root of unity, then prove the following.
(w2 + w - 1)3 = - 8