Advertisements
Advertisements
प्रश्न
If x = a + b, y = αa + βb and z = aβ + bα, where α and β are the complex cube roots of unity, show that xyz = a3 + b3.
उत्तर
x = a + b, y = αa + βb and z = aβ + bα
α and β are the complex cube roots of unity.
∴ α = `(-1 + "i"sqrt(3))/2 and beta = (-1 - "i"sqrt(3))/2`
∴ αβ = `((-1 + "i"sqrt(3))/2)((-1 - "i"sqrt(3))/2)`
= `((-1)^2 - ("i"sqrt(3))^2)/4`
= `(1 - (-1)(3))/4` ...[∵ i2 = – 1]
= `(1 + 3)/4`
∴ αβ = 1
Also, α + β = `(-1 + "i"sqrt(3))/2 + (-1 - "i"sqrt(3))/2`
= `(-1 + "i"sqrt(3) - 1 - "i"sqrt(3))/2`
= `(-2)/2`
∴ α + β = -1
L.H.S. = xyz = (a + b)(αa + βb)(aβ + bα)
= (a + b)(αβa2 + α2ab + β2ab + αβb2)
= (a + b)[1. (a2) + (α2 + β2)ab + 1. (b2)]
= (a + b) {a2 + [(α + β)2 – 2αβ ]ab + b2}
= (a + b) {a2 + [(– 1)2 – 2(1)]ab + b2}
= (a + b) [a2 + (1 – 2)ab + b2]
= (a + b)(a2 – ab + b2)
= a3 +b3
= R.H.S.
APPEARS IN
संबंधित प्रश्न
If ω is a complex cube root of unity, find the value of ω2 + ω3 + ω4.
If ω is a complex cube root of unity, find the value of (1 + ω2)3
If α and β are the complex cube roots of unity, show that α2 + β2 + αβ = 0.
Find the value of ω18
Find the value of ω–105
If ω is a complex cube root of unity, show that (1 + ω − ω2)6 = 64
If ω is a complex cube root of unity, find the value of `ω + 1/ω`
If ω is a complex cube root of unity, find the value of ω2 + ω3 + ω4
If ω is a complex cube root of unity, find the value of (1 + ω2)3
If (1 + ω2)m = (1 + ω4)m and ω is an imaginary cube root of unity, then least positive integral value of m is ______.
Let α be a root of the equation 1 + x2 + x4 = 0. Then the value of α1011 + α2022 – α3033 is equal to ______.
Let z = `(1 - isqrt(3))/2`, i = `sqrt(-1)`. Then the value of `21 + (z + 1/z)^3 + (z^2 + 1/z^2) + (z^3 + 1/z^3)^3 + ...... + (z^21 + 1/z^21)^3` is ______.
If 1, α1, α2, ...... αn–1 are the roots of unity, then (1 + α1)(1 + α2) ...... (1 + αn–1) is equal to (when n is even) ______.
If w is a complex cube root of unity, show that `((a+bw+cw^2))/(c+aw+bw^2) = w^2`
If w is a complex cube root of unity, show that `((a+bw+cw^2))/(c+aw+bw^2) =w^2`
If ω is a complex cube-root of unity, then prove the following:
(ω2 + ω −1)3 = −8
If ω is a complex cube-root of unity, then prove the following:
(ω2 + ω − 1)3 = −8
If w is a complex cube root of unity, show that `((a + bw + cw^2))/(c + aw + bw^2) = w^2`