Advertisements
Advertisements
प्रश्न
If ω is a complex cube root of unity, show that (1 + ω − ω2)6 = 64
उत्तर
ω is the complex cube root of unity
∴ ω3 = 1 and 1 + ω + ω2 = 0
Also, 1 + ω2 = − ω, 1 + ω = − ω2 and ω + ω2 = − 1
L.H.S. = (1 + ω − ω2)6
= [(1 + ω) − ω2]6
= (−ω2 − ω2)6
= (−2ω2)6
= 64.ω12
= 64(ω3)4
= 64(1)4
= 64
= R.H.S.
APPEARS IN
संबंधित प्रश्न
If `omega` is a complex cube root of unity, show that `(2 - omega)(2 - omega^2)` = 7
If ω is a complex cube root of unity, show that (2 + ω + ω2)3 - (1 - 3ω + ω2)3 = 65
If ω is a complex cube root of unity, show that `(("a" + "b"omega + "c"omega^2))/("c" + "a"omega + "b"omega^2) = omega^2`.
If ω is a complex cube root of unity, find the value of `omega + 1/omega`
If ω is a complex cube root of unity, find the value of ω2 + ω3 + ω4.
If ω is a complex cube root of unity, find the value of (1 + ω2)3
If ω is a complex cube root of unity, then prove the following: (ω2 + ω - 1)3 = – 8
Find the value of ω21
If ω is a complex cube root of unity, show that (1 + ω)3 − (1 + ω2)3 = 0
If ω is a complex cube root of unity, show that `("a" + "b"ω + "c"ω^2)/("c" + "a"ω + "b"ω^2)` = ω2
If ω is a complex cube root of unity, show that (a + b) + (aω + bω2) + (aω2 + bω) = 0
If ω is a complex cube root of unity, show that (a + b)2 + (aω + bω2)2 + (aω2 + bω)2 = 6ab
If ω is a complex cube root of unity, find the value of ω2 + ω3 + ω4
If α and β are the complex cube root of unity, show that α2 + β2 + αβ = 0
Select the correct answer from the given alternatives:
If ω is a complex cube root of unity, then the value of ω99+ ω100 + ω101 is :
If ω(≠1) is a cube root of unity and (1 + ω)7 = A + Bω, then A and B are respectively the numbers ______.
Answer the following:
If ω is a complex cube root of unity, prove that (1 − ω + ω2)6 +(1 + ω − ω2)6 = 128
If (1 + ω2)m = (1 + ω4)m and ω is an imaginary cube root of unity, then least positive integral value of m is ______.
Let α be a root of the equation 1 + x2 + x4 = 0. Then the value of α1011 + α2022 – α3033 is equal to ______.
Let z = `(1 - isqrt(3))/2`, i = `sqrt(-1)`. Then the value of `21 + (z + 1/z)^3 + (z^2 + 1/z^2) + (z^3 + 1/z^3)^3 + ...... + (z^21 + 1/z^21)^3` is ______.
If 1, α1, α2, ...... αn–1 are the roots of unity, then (1 + α1)(1 + α2) ...... (1 + αn–1) is equal to (when n is even) ______.
The value of the expression 1.(2 – ω) + (2 – ω2) + 2.(3 – ω)(3 – ω2) + ....... + (n – 1)(n – ω)(n – ω2), where ω is an imaginary cube root of unity is ______.
If the cube roots of the unity are 1, ω and ω2, then the roots of the equation (x – 1)3 + 8 = 0, are ______.
Simplify the following and express in the form a + ib.
`(3i^5 + 2i^7 + i^9)/(i^6 + 2i^8 + 3i^18)`
If w is a complex cube root of unity, show that `((a+bw+cw^2))/(c+aw+bw^2) = w^2`
If w is a complex cube root of unity, show that
`((a + bw + cw^2)) /( c + aw + bw^2 )= w^2`
If w is a complex cube root of unity, show that, `((a + bw + cw^2))/(c + aw + bw^2) = w^2`
If w is a complex cube root of unity, show that `((a + bw +cw^2))/(c +aw + bw^2) = w^2`
If ω is a complex cube-root of unity, then prove the following:
(a + b) + (aω + bω2) + (aω2 + bω) = 0
If w is a complex cube root of unity, show that `((a + bω + cω^2))/(c + aω + bω^2) = ω^2`
If ω is a complex cube-root of unity, then prove the following :
(ω2 + ω − 1)3 = − 8
If ω is a complex cube-root of unity, then prove the following:
(ω2 + ω − 1)3 = −8
If ω is a complex cube root of unity, show that `((a + b\omega + c\omega^2))/(c + a\omega + b\omega^2) = \omega^2`