Advertisements
Advertisements
प्रश्न
If ω is a complex cube root of unity, show that (2 − ω)(2 − ω2) = 7
उत्तर
ω is a complex cube root of unity.
∴ ω3 = 1 and 1 + ω + ω2 = 0
∴ ω + ω2 = – 1, 1 + ω = – ω2 and 1 + ω2 = – ω
(2 – ω)(2 – ω2) = 7
= 4 – 2ω2 – 2ω + ω3
= 4 – 2(ω2 + ω) + ω3
= 4 – 2(– 1) + 1
= 4 + 2 + 1
= 7
APPEARS IN
संबंधित प्रश्न
If ω is a complex cube root of unity, show that (2 + ω + ω2)3 - (1 - 3ω + ω2)3 = 65
If ω is a complex cube root of unity, show that `(("a" + "b"omega + "c"omega^2))/("c" + "a"omega + "b"omega^2) = omega^2`.
If ω is a complex cube root of unity, find the value of `omega + 1/omega`
If x = a + b, y = αa + βb and z = aβ + bα, where α and β are the complex cube roots of unity, show that xyz = a3 + b3.
Find the value of ω–30
Find the value of ω–105
If ω is a complex cube root of unity, show that (2 + ω + ω2)3 − (1 − 3ω + ω2)3 = 65
If ω is a complex cube root of unity, show that `("a" + "b"ω + "c"ω^2)/("c" + "a"ω + "b"ω^2)` = ω2
If ω is a complex cube root of unity, show that (a − b) (a − bω) (a − bω2) = a3 − b3
If ω is a complex cube root of unity, show that (a + b)2 + (aω + bω2)2 + (aω2 + bω)2 = 6ab
If ω is a complex cube root of unity, find the value of `ω + 1/ω`
If ω is a complex cube root of unity, find the value of (1 + ω)(1 + ω2)(1 + ω4)(1 + ω8)
If α and β are the complex cube root of unity, show that α2 + β2 + αβ = 0
If α and β are the complex cube root of unity, show that α4 + β4 + α−1β−1 = 0
Find the equation in cartesian coordinates of the locus of z if |z – 3| = 2
Find the equation in cartesian coordinates of the locus of z if |z − 5 + 6i| = 5
Find the equation in cartesian coordinates of the locus of z if |z + 8| = |z – 4|
Find the equation in cartesian coordinates of the locus of z if `|("z" + 3"i")/("z" - 6"i")|` = 1
If (1 + ω2)m = (1 + ω4)m and ω is an imaginary cube root of unity, then least positive integral value of m is ______.
Let z = `(1 - isqrt(3))/2`, i = `sqrt(-1)`. Then the value of `21 + (z + 1/z)^3 + (z^2 + 1/z^2) + (z^3 + 1/z^3)^3 + ...... + (z^21 + 1/z^21)^3` is ______.
If 1, α1, α2, ...... αn–1 are the roots of unity, then (1 + α1)(1 + α2) ...... (1 + αn–1) is equal to (when n is even) ______.
If w is a complex cube root of unity, show that
`((a + bw + cw^2)) /( c + aw + bw^2 )= w^2`
If w is a complex cube root of unity, show that, `((a + bw + cw^2))/(c + aw + bw^2) = w^2`
If w is a complex cube-root of unity, then prove the following:
(ω2 + ω − 1)3 = −8
If w is a complex cube root of unity, show that `((a + bw + cw^2))/(c+aw+bw^2) = w^2`
If ω is a complex cube root of unity, then prove the following.
(ω2 + ω −1)3 = −8
If ω is a complex cube-root of unity, then prove the following:
(a + b) + (aω + bω2) + (aω2 + bω) = 0
If ω is a complex cube-root of unity, then prove the following :
(ω2 + ω − 1)3 = − 8
Find the value of `sqrt(-3) xx sqrt(-6)`.
If ω is a complex cube-root of unity, then prove the following:
(ω2 + ω − 1)3 = −8
If w is a complex cube root of unity, show that `((a + bw + cw^2))/(c + aw + bw^2) = w^2`
If w is a complex cube-root of unity, then prove the following.
(w2 + w - 1)3 = - 8
If w is a complex cube root of unity, show that `((a + bomega + comega^2))/(c + aomega + bomega^2) = w^2`
If ω is a complex cube root of unity, show that `((a + bomega + comega^2))/(c + aomega + bomega^2)=omega^2`