Advertisements
Advertisements
प्रश्न
If ω is a complex cube root of unity, show that (a + b)2 + (aω + bω2)2 + (aω2 + bω)2 = 6ab
उत्तर
ω is a complex cube root of unity.
∴ ω3 = 1 and 1 + ω + ω2 = 0.
∴ ω + ω2 = – 1, 1 + ω = – ω2 and 1 + ω2 = – ω.
(a + b)2 + (aω + bω2)2 + (aω2 + bω)2
= (a2 + 2ab + b2) + (a2ω2 + 2abω3 + b2ω4) + (a2ω4 + 2abω3 + b2ω2)
= a2 + 2ab + b2 + a2ω2 + 2ab + b2ω + a2ω + 2ab + b2ω2 ...[∵ ω4 = ω3 × ω = ω]
= 6ab + (a2 + a2ω2 + a2ω) + (b2 + b2ω + b2ω)
= 6ab +a2(1 + ω + ω2) + b2(1 + ω + ω2)
= 6ab + a2(0) + b2(0)
= 6ab
APPEARS IN
संबंधित प्रश्न
If ω is a complex cube root of unity, show that (2 + ω + ω2)3 - (1 - 3ω + ω2)3 = 65
If ω is a complex cube root of unity, find the value of (1 + ω2)3
If α and β are the complex cube roots of unity, show that α2 + β2 + αβ = 0.
Find the value of ω18
Find the value of ω–30
Find the value of ω–105
If ω is a complex cube root of unity, show that (2 − ω)(2 − ω2) = 7
If ω is a complex cube root of unity, show that (2 + ω + ω2)3 − (1 − 3ω + ω2)3 = 65
If ω is a complex cube root of unity, show that (a + b) + (aω + bω2) + (aω2 + bω) = 0
If ω is a complex cube root of unity, find the value of `ω + 1/ω`
If ω is a complex cube root of unity, find the value of (1 + ω2)3
If ω is a complex cube root of unity, find the value of (1 + ω)(1 + ω2)(1 + ω4)(1 + ω8)
If α and β are the complex cube root of unity, show that α2 + β2 + αβ = 0
If α and β are the complex cube root of unity, show that α4 + β4 + α−1β−1 = 0
Find the equation in cartesian coordinates of the locus of z if |z − 5 + 6i| = 5
Find the equation in cartesian coordinates of the locus of z if |z + 8| = |z – 4|
Find the equation in cartesian coordinates of the locus of z if |z – 2 – 2i| = |z + 2 + 2i|
Select the correct answer from the given alternatives:
If ω is a complex cube root of unity, then the value of ω99+ ω100 + ω101 is :
If (1 + ω2)m = (1 + ω4)m and ω is an imaginary cube root of unity, then least positive integral value of m is ______.
Simplify the following and express in the form a + ib.
`(3i^5 + 2i^7 + i^9)/(i^6 + 2i^8 + 3i^18)`
If w is a complex cube root of unity, show that `((a+bw+cw^2))/(c+aw+bw^2) = w^2`
If w is a complex cube root of unity, show that
`((a + bw + cw^2)) /( c + aw + bw^2 )= w^2`
If w is a complex cube root of unity, show that `((a + bw +cw^2))/(c +aw + bw^2) = w^2`
If w is a complex cube-root of unity, then prove the following:
(ω2 + ω − 1)3 = −8
If w is a complex cube root of unity, show that `((a+bw+cw^2))/(c+aw+bw^2) =w^2`
If w is a complex cube root of unity, show that `((a + bω + cω^2))/(c + aω + bω^2) = ω^2`
Find the value of `sqrt(-3) xx sqrt(-6)`.
If ω is a complex cube-root of unity, then prove the following:
(ω2 + ω − 1)3 = −8
If w is a complex cube root of unity, show that `((a+bw+cw^2))/(c+aw+bw^2) = w^2`
If ω is a complex cube root of unity, show that `((a + b\omega + c\omega^2))/(c + a\omega + b\omega^2) = \omega^2`