मराठी

If α and β are the complex cube roots of unity, show that α2 + β2 + αβ = 0. - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

If α and β are the complex cube roots of unity, show that α2 + β2 + αβ = 0.

बेरीज

उत्तर

α and β are the complex cube roots of unity.

∴ α = `(-1 + "i"sqrt(3))/2 and beta = (-1 - "i"sqrt(3))/2`

∴ αβ = `((- 1 + "i"sqrt(3))/2)((-1 - "i"sqrt(3))/2)`

= `((-1)^2 - (isqrt(3))^2)/4`

= `(1 - (-1)(3))/4`       ...[∵ i2 = – 1]

= `(1 + 3)/4`

∴ αβ = 1

Also, α + β = `(-1 + "i"sqrt(3))/2 + (-1 - "i"sqrt(3))/2`

= `(-1 + "i"sqrt(3) - 1 - "i" sqrt(3))/2`

= `(-2)/2`

∴ α + β = – 1

L.H.S. = α2 + β2 + αβ
= α2 + 2αβ + β2 + αβ – 2αβ   ...[Adding and subtracting 2αβ]
= (α2 + 2αβ + β2) – αβ
= (α + β)2 – αβ
= (– 1)2 – 1 
= 1 – 1
= 0 = R.H.S.

shaalaa.com
Cube Root of Unity
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 3: Complex Numbers - EXERCISE 3.3 [पृष्ठ ४२]

APPEARS IN

संबंधित प्रश्‍न

If ω is a complex cube root of unity, show that (2 + ω + ω2)3 - (1 - 3ω + ω2)3 = 65


If ω is a complex cube root of unity, show that `(("a" + "b"omega + "c"omega^2))/("c" + "a"omega + "b"omega^2) = omega^2`.


If ω is a complex cube root of unity, then prove the following:  (a + b) + (aω + bω2) + (aω2 + bω) = 0.


If ω is a complex cube root of unity, show that (1 + ω − ω2)6 = 64


If ω is a complex cube root of unity, show that (3 + 3ω + 5ω2)6 − (2 + 6ω + 2ω2)3 = 0


If ω is a complex cube root of unity, show that (a − b) (a − bω) (a − bω2) = a3 − b3


If ω is a complex cube root of unity, find the value of (1 + ω2)3


If ω is a complex cube root of unity, find the value of (1 − ω − ω2)3 + (1 − ω + ω2)3


If ω is a complex cube root of unity, find the value of (1 + ω)(1 + ω2)(1 + ω4)(1 + ω8)


If α and β are the complex cube root of unity, show that α2 + β2 + αβ = 0


If , where α and β are the complex cube-roots of unity, show that xyz = a3 + b3.


Find the equation in cartesian coordinates of the locus of z if |z – 3| = 2


Find the equation in cartesian coordinates of the locus of z if |z − 5 + 6i| = 5


Answer the following:

If ω is a complex cube root of unity, prove that (1 − ω + ω2)6 +(1 + ω − ω2)6 = 128


Let α be a root of the equation 1 + x2 + x4 = 0. Then the value of α1011 + α2022 – α3033 is equal to ______.


The value of the expression 1.(2 – ω) + (2 – ω2) + 2.(3 – ω)(3 – ω2) + ....... + (n – 1)(n – ω)(n – ω2), where ω is an imaginary cube root of unity is ______.


Simplify the following and express in the form a + ib.

`(3i^5 + 2i^7 + i^9)/(i^6 + 2i^8 + 3i^18)`


If w is a complex cube root of unity, show that `((a + bω + cω^2))/(c + aω + bω^2) = ω^2`


If w is a complex cube-root of unity, then prove the following

(w2 + w - 1)3 = - 8


If ω is a complex cube root of unity, show that `((a + bomega + comega^2))/(c + aomega + bomega^2)=omega^2`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×