हिंदी

If α and β are the complex cube roots of unity, show that α2 + β2 + αβ = 0. - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

If α and β are the complex cube roots of unity, show that α2 + β2 + αβ = 0.

योग

उत्तर

α and β are the complex cube roots of unity.

∴ α = `(-1 + "i"sqrt(3))/2 and beta = (-1 - "i"sqrt(3))/2`

∴ αβ = `((- 1 + "i"sqrt(3))/2)((-1 - "i"sqrt(3))/2)`

= `((-1)^2 - (isqrt(3))^2)/4`

= `(1 - (-1)(3))/4`       ...[∵ i2 = – 1]

= `(1 + 3)/4`

∴ αβ = 1

Also, α + β = `(-1 + "i"sqrt(3))/2 + (-1 - "i"sqrt(3))/2`

= `(-1 + "i"sqrt(3) - 1 - "i" sqrt(3))/2`

= `(-2)/2`

∴ α + β = – 1

L.H.S. = α2 + β2 + αβ
= α2 + 2αβ + β2 + αβ – 2αβ   ...[Adding and subtracting 2αβ]
= (α2 + 2αβ + β2) – αβ
= (α + β)2 – αβ
= (– 1)2 – 1 
= 1 – 1
= 0 = R.H.S.

shaalaa.com
Cube Root of Unity
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 3: Complex Numbers - EXERCISE 3.3 [पृष्ठ ४२]

APPEARS IN

बालभारती Mathematics and Statistics 1 (Commerce) [English] 11 Standard Maharashtra State Board
अध्याय 3 Complex Numbers
EXERCISE 3.3 | Q 3) | पृष्ठ ४२
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×