Advertisements
Advertisements
प्रश्न
If x = a + b, y = αa + βb and z = aβ + bα, where α and β are the complex cube roots of unity, show that xyz = a3 + b3.
उत्तर
x = a + b, y = αa + βb and z = aβ + bα
α and β are the complex cube roots of unity.
∴ α = `(-1 + "i"sqrt(3))/2 and beta = (-1 - "i"sqrt(3))/2`
∴ αβ = `((-1 + "i"sqrt(3))/2)((-1 - "i"sqrt(3))/2)`
= `((-1)^2 - ("i"sqrt(3))^2)/4`
= `(1 - (-1)(3))/4` ...[∵ i2 = – 1]
= `(1 + 3)/4`
∴ αβ = 1
Also, α + β = `(-1 + "i"sqrt(3))/2 + (-1 - "i"sqrt(3))/2`
= `(-1 + "i"sqrt(3) - 1 - "i"sqrt(3))/2`
= `(-2)/2`
∴ α + β = -1
L.H.S. = xyz = (a + b)(αa + βb)(aβ + bα)
= (a + b)(αβa2 + α2ab + β2ab + αβb2)
= (a + b)[1. (a2) + (α2 + β2)ab + 1. (b2)]
= (a + b) {a2 + [(α + β)2 – 2αβ ]ab + b2}
= (a + b) {a2 + [(– 1)2 – 2(1)]ab + b2}
= (a + b) [a2 + (1 – 2)ab + b2]
= (a + b)(a2 – ab + b2)
= a3 +b3
= R.H.S.
APPEARS IN
संबंधित प्रश्न
If `omega` is a complex cube root of unity, show that `(2 - omega)(2 - omega^2)` = 7
If ω is a complex cube root of unity, show that `(("a" + "b"omega + "c"omega^2))/("c" + "a"omega + "b"omega^2) = omega^2`.
If `omega` is a complex cube root of unity, find the value of `(1 + omega)(1 + omega^2)(1 + omega^4)(1 + omega^8)`
If ω is a complex cube root of unity, show that (3 + 3ω + 5ω2)6 − (2 + 6ω + 2ω2)3 = 0
If ω is a complex cube root of unity, show that (a + b) + (aω + bω2) + (aω2 + bω) = 0
If ω is a complex cube root of unity, find the value of `ω + 1/ω`
If ω is a complex cube root of unity, find the value of (1 + ω2)3
If α and β are the complex cube root of unity, show that α2 + β2 + αβ = 0
If , where α and β are the complex cube-roots of unity, show that xyz = a3 + b3.
Find the equation in cartesian coordinates of the locus of z if |z – 3| = 2
Find the equation in cartesian coordinates of the locus of z if |z − 5 + 6i| = 5
Find the equation in cartesian coordinates of the locus of z if `|("z" + 3"i")/("z" - 6"i")|` = 1
If ω(≠1) is a cube root of unity and (1 + ω)7 = A + Bω, then A and B are respectively the numbers ______.
If the cube roots of the unity are 1, ω and ω2, then the roots of the equation (x – 1)3 + 8 = 0, are ______.
If w is a complex cube-root of unity, then prove the following:
(ω2 + ω − 1)3 = −8
If w is a complex cube root of unity, show that `((a + bw + cw^2))/(c+aw+bw^2) = w^2`
If w is a complex cube root of unity, show that `((a+bw+cw^2))/(c+aw+bw^2) =w^2`
If ω is a complex cube root of unity, then prove the following.
(ω2 + ω −1)3 = −8
If w is a complex cube-root of unity, then prove the following
(w2 + w - 1)3 = - 8