हिंदी

If ω is a complex cube root of unity, find the value of (1+ω)(1+ω2)(1+ω4)(1+ω8) - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

If `omega` is a complex cube root of unity, find the value of `(1 + omega)(1 + omega^2)(1 + omega^4)(1 + omega^8)`

योग

उत्तर

ω is a complex cube root of unity
∴ ω3 = 1 and 1 + ω + ω2 = 0

Also, 1 + ω2 = -ω, 1 + ω = - ω2 and ω + ω2 = – 1

(1 + ω)(1 + ω2)(1 + ω4)(1 + ω8)

= (1 + ω)(1 + ω2)(1 + ω)(1 + ω2)        ...[∵ ω3 = 1, therefore ω4 = ω]

= (- ω2)(- ω)(- ω2)(- ω) = ω6 = (ω3)2 = (1)2  =1.

shaalaa.com
Cube Root of Unity
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 3: Complex Numbers - EXERCISE 3.3 [पृष्ठ ४२]

APPEARS IN

बालभारती Mathematics and Statistics 1 (Commerce) [English] 11 Standard Maharashtra State Board
अध्याय 3 Complex Numbers
EXERCISE 3.3 | Q 2) v) | पृष्ठ ४२

संबंधित प्रश्न

If ω is a complex cube root of unity, show that (2 + ω + ω2)3 - (1 - 3ω + ω2)3 = 65


If ω is a complex cube root of unity, show that `(("a" + "b"omega + "c"omega^2))/("c" + "a"omega + "b"omega^2) = omega^2`.


If ω is a complex cube root of unity, then prove the following:  (a + b) + (aω + bω2) + (aω2 + bω) = 0.


If ω is a complex cube root of unity, show that (a − b) (a − bω) (a − bω2) = a3 − b3


If ω is a complex cube root of unity, find the value of (1 + ω)(1 + ω2)(1 + ω4)(1 + ω8)


If α and β are the complex cube root of unity, show that α2 + β2 + αβ = 0


If , where α and β are the complex cube-roots of unity, show that xyz = a3 + b3.


Answer the following:

If α and β are complex cube roots of unity, prove that (1 − α)(1 − β) (1 − α2)(1 − β2) = 9


If ω is the cube root of unity then find the value of `((-1 + "i"sqrt(3))/2)^18 + ((-1 - "i"sqrt(3))/2)^18`


Which of the following is the third root of `(1 + i)/sqrt2`? 


Let α be a root of the equation 1 + x2 + x4 = 0. Then the value of α1011 + α2022 – α3033 is equal to ______.


Let z = `(1 - isqrt(3))/2`, i = `sqrt(-1)`. Then the value of `21 + (z + 1/z)^3 + (z^2 + 1/z^2) + (z^3 + 1/z^3)^3 + ...... + (z^21 + 1/z^21)^3` is ______.


If w is a complex cube root of unity, show that `((a+bw+cw^2))/(c+aw+bw^2) = w^2`


If ω is a complex cube-root of unity, then prove the following:

(a + b) + (aω + bω2) + (aω2 + bω) = 0


If w is a complex cube root of unity, show that `((a + bω + cω^2))/(c + aω + bω^2) = ω^2`


Find the value of `sqrt(-3) xx sqrt(-6)`.


 Find the value of `sqrt(-3)xx sqrt (-6)`


If w is a complex cube root of unity, show that `((a+bw+cw^2))/(c+aw+bw^2) = w^2`


If w is a complex cube root of unity, show that `((a+bw+cw^2))/(c+aw+bw^2)=w^2`


If ω is a complex cube-root of unity, then prove the following.

2 + ω − 1)3 = −8


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×