हिंदी

If ω is a complex cube root of unity, show that abccab(a+bω+cω2)c+aω+bω2=ω2. - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

If ω is a complex cube root of unity, show that `(("a" + "b"omega + "c"omega^2))/("c" + "a"omega + "b"omega^2) = omega^2`.

योग

उत्तर

ω is a complex cube root of unity.

∴ ω3 = 1 and 1 + ω + ω2 = 0

Also, 1 + ω2 = −ω, 1 + ω = −ω2 and ω + ω2 = −1

L.H.S. = `("a" + "b"omega + "c"omega^2)/("c" + "a"omega + "b"omega^2)`

= `("a"omega^3 + "b"omega^4  + "c"omega^2)/("c" + "a"omega + "b"omega^2)     ...[∵ omega^3 = 1, omega^4 = omega]`

= `(omega^2("c" + "a"omega + "b"omega^2))/("c" + "a"omega + "b"omega^2)`

= ω2

= R.H.S.

shaalaa.com
Cube Root of Unity
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 3: Complex Numbers - EXERCISE 3.3 [पृष्ठ ४२]

APPEARS IN

बालभारती Mathematics and Statistics 1 (Commerce) [English] 11 Standard Maharashtra State Board
अध्याय 3 Complex Numbers
EXERCISE 3.3 | Q 1) iii) | पृष्ठ ४२

संबंधित प्रश्न

If ω is a complex cube root of unity, find the value of (1 + ω2)3


If `omega` is a complex cube root of unity, find the value of `(1 + omega)(1 + omega^2)(1 + omega^4)(1 + omega^8)`


If ω is a complex cube root of unity, then prove the following: (ω2 + ω - 1)3 = – 8


Find the value of ω18


If ω is a complex cube root of unity, show that (1 + ω)3 − (1 + ω2)3 = 0


If ω is a complex cube root of unity, show that (a + b) + (aω + bω2) + (aω2 + bω) = 0


If ω is a complex cube root of unity, find the value of `ω + 1/ω`


If ω is a complex cube root of unity, find the value of (1 + ω2)3


If ω is a complex cube root of unity, find the value of (1 − ω − ω2)3 + (1 − ω + ω2)3


If ω is a complex cube root of unity, find the value of (1 + ω)(1 + ω2)(1 + ω4)(1 + ω8)


Find the equation in cartesian coordinates of the locus of z if |z + 8| = |z – 4|


Answer the following:

If ω is a complex cube root of unity, prove that (1 − ω + ω2)6 +(1 + ω − ω2)6 = 128


If 1, α1, α2, ...... αn–1 are the roots of unity, then (1 + α1)(1 + α2) ...... (1 + αn–1) is equal to (when n is even) ______.


Simplify the following and express in the form a + ib.

`(3i^5 + 2i^7 + i^9)/(i^6 + 2i^8 + 3i^18)`


If w is a complex cube root of unity, show that, `((a + bw + cw^2))/(c + aw + bw^2) = w^2`


If w is a complex cube root of unity, show that `((a + bw + cw^2))/(c+aw+bw^2) = w^2`


If ω is a complex cube-root of unity, then prove the following:

2 + ω − 1)3 = −8


If w is a complex cube root of unity, show that `((a+bw+cw^2))/(c+aw+bw^2) = w^2`


If w is a complex cube root of unity, show that `((a + bw + cw^2))/(c + aw + bw^2) = w^2`


If ω is a complex cube root of unity, show that `((a + bomega + comega^2))/(c + aomega + bomega^2)=omega^2`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×