Advertisements
Advertisements
Question
If ω is a complex cube root of unity, show that `(("a" + "b"omega + "c"omega^2))/("c" + "a"omega + "b"omega^2) = omega^2`.
Solution
ω is a complex cube root of unity.
∴ ω3 = 1 and 1 + ω + ω2 = 0
Also, 1 + ω2 = −ω, 1 + ω = −ω2 and ω + ω2 = −1
L.H.S. = `("a" + "b"omega + "c"omega^2)/("c" + "a"omega + "b"omega^2)`
= `("a"omega^3 + "b"omega^4 + "c"omega^2)/("c" + "a"omega + "b"omega^2) ...[∵ omega^3 = 1, omega^4 = omega]`
= `(omega^2("c" + "a"omega + "b"omega^2))/("c" + "a"omega + "b"omega^2)`
= ω2
= R.H.S.
APPEARS IN
RELATED QUESTIONS
If `omega` is a complex cube root of unity, show that `(2 - omega)(2 - omega^2)` = 7
If ω is a complex cube root of unity, show that (2 + ω + ω2)3 - (1 - 3ω + ω2)3 = 65
If ω is a complex cube root of unity, find the value of `omega + 1/omega`
If ω is a complex cube root of unity, find the value of (1 + ω2)3
If `omega` is a complex cube root of unity, find the value of `(1 + omega)(1 + omega^2)(1 + omega^4)(1 + omega^8)`
If x = a + b, y = αa + βb and z = aβ + bα, where α and β are the complex cube roots of unity, show that xyz = a3 + b3.
Find the value of ω–30
If ω is a complex cube root of unity, show that `("a" + "b"ω + "c"ω^2)/("c" + "a"ω + "b"ω^2)` = ω2
If ω is a complex cube root of unity, show that (a + b) + (aω + bω2) + (aω2 + bω) = 0
If ω is a complex cube root of unity, find the value of ω2 + ω3 + ω4
If α and β are the complex cube root of unity, show that α4 + β4 + α−1β−1 = 0
Find the equation in cartesian coordinates of the locus of z if |z + 8| = |z – 4|
If α, β, γ are the cube roots of p (p < 0), then for any x, y and z, `(xalpha + "y"beta + "z"gamma)/(xbeta + "y"gamma + "z"alpha)` = ______.
If w is a complex cube root of unity, show that, `((a + bw + cw^2))/(c + aw + bw^2) = w^2`
If ω is a complex cube root of unity, then prove the following.
(ω2 + ω −1)3 = −8
If ω is a complex cube-root of unity, then prove the following:
(ω2 + ω −1)3 = −8
If w is a complex cube-root of unity, then prove the following
(w2 + w - 1)3 = - 8
If ω is a complex cube-root of unity, then prove the following:
(ω2 + ω − 1)3 = −8
If w is a complex cube root of unity, show that `((a + bw + cw^2))/(c + aw + bw^2) = w^2`
If ω is a complex cube-root of unity, then prove the following.
(ω2 + ω − 1)3 = −8