English

If ω is a complex cube root of unity, find the value of ω2 + ω3 + ω4 - Mathematics and Statistics

Advertisements
Advertisements

Question

If ω is a complex cube root of unity, find the value of ω2 + ω3 + ω4

Sum

Solution

Since ω is the complex cube root of unity,

ω3 = 1 and 1 + ω + ω2 = 0

∴  1 + ω = – ω2, 1 + ω2 = – ω and ω + ω2 = – 1.

ω2 + ω3 + ω4 = ω2(1 + ω + ω2)

= ω2 × 0

= 0

shaalaa.com
Cube Root of Unity
  Is there an error in this question or solution?
Chapter 1: Complex Numbers - Exercise 1.4 [Page 20]

RELATED QUESTIONS

If `omega` is a complex cube root of unity, show that `(2 - omega)(2 - omega^2)` = 7


If ω is a complex cube root of unity, find the value of ω2 + ω3 + ω4.


If ω is a complex cube root of unity, find the value of (1 - ω - ω2)3 + (1 - ω + ω2)3


If α and β are the complex cube roots of unity, show that α2 + β2 + αβ = 0.


Find the value of ω18


Find the value of ω21


Find the value of ω–30


If ω is a complex cube root of unity, show that (2 + ω + ω2)3 − (1 − 3ω + ω2)3 = 65


If ω is a complex cube root of unity, show that `("a" + "b"ω + "c"ω^2)/("c" + "a"ω + "b"ω^2)` = ω2


If ω is a complex cube root of unity, show that (a + b) + (aω + bω2) + (aω2 + bω) = 0


If ω is a complex cube root of unity, show that (a − b) (a − bω) (a − bω2) = a3 − b3


If ω is a complex cube root of unity, find the value of (1 − ω − ω2)3 + (1 − ω + ω2)3


If α and β are the complex cube root of unity, show that α4 + β4 + α−1β−1 = 0


Find the equation in cartesian coordinates of the locus of z if |z| = 10


Find the equation in cartesian coordinates of the locus of z if |z − 5 + 6i| = 5


Find the equation in cartesian coordinates of the locus of z if |z + 8| = |z – 4|


Find the equation in cartesian coordinates of the locus of z if `|("z" + 3"i")/("z" - 6"i")|` = 1


If ω is the cube root of unity then find the value of `((-1 + "i"sqrt(3))/2)^18 + ((-1 - "i"sqrt(3))/2)^18`


Let z = `(1 - isqrt(3))/2`, i = `sqrt(-1)`. Then the value of `21 + (z + 1/z)^3 + (z^2 + 1/z^2) + (z^3 + 1/z^3)^3 + ...... + (z^21 + 1/z^21)^3` is ______.


If the cube roots of the unity are 1, ω and ω2, then the roots of the equation (x – 1)3 + 8 = 0, are ______.


Simplify the following and express in the form a + ib.

`(3i^5 + 2i^7 + i^9)/(i^6 + 2i^8 + 3i^18)`


If w is a complex cube root of unity, show that

`((a + bw + cw^2)) /( c + aw + bw^2 )= w^2`


If w is a complex cube root of unity, show that `((a + bw +cw^2))/(c +aw + bw^2) = w^2`


If ω is a complex cube-root of unity, then prove the following :

2 + ω − 1)3 = − 8


If w is a complex cube-root of unity, then prove the following

(w2 + w - 1)3 = - 8


If w is a complex cube root of unity, show that `((a + bw + cw^2))/(c + aw + bw^2) = w^2`


If w is a complex cube root of unity, show that `((a + bomega + comega^2))/(c + aomega + bomega^2) = w^2`


If ω is a complex cube root of unity, show that `((a + bomega + comega^2))/(c + aomega + bomega^2)=omega^2`


If ω is a complex cube root of unity, show that `((a + b\omega + c\omega^2))/(c + a\omega + b\omega^2) = \omega^2`


If ω is a complex cube-root of unity, then prove the following.

2 + ω − 1)3 = −8


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×