English

If ω is a complex cube root of unity, find the value of (1 + ω2)3 - Mathematics and Statistics

Advertisements
Advertisements

Question

If ω is a complex cube root of unity, find the value of (1 + ω2)3

Sum

Solution

ω is the complex cube root of unity

∴ ω3 = 1 and 1 + ω + ω2 = 0

Also, 1 + ω2 = – ω, 1 + ω = – ω2 and ω + ω2 = – 1

(1 + ω2)3

= (– ω)3

= – ω3

= –1

shaalaa.com
Cube Root of Unity
  Is there an error in this question or solution?
Chapter 1: Complex Numbers - Exercise 1.4 [Page 20]

APPEARS IN

RELATED QUESTIONS

If ω is a complex cube root of unity, show that (2 + ω + ω2)3 - (1 - 3ω + ω2)3 = 65


If ω is a complex cube root of unity, show that `(("a" + "b"omega + "c"omega^2))/("c" + "a"omega + "b"omega^2) = omega^2`.


If `omega` is a complex cube root of unity, find the value of `(1 + omega)(1 + omega^2)(1 + omega^4)(1 + omega^8)`


If α and β are the complex cube roots of unity, show that α2 + β2 + αβ = 0.


If x = a + b, y = αa + βb and z = aβ + bα, where α and β are the complex cube roots of unity, show that xyz = a3 + b3.


If ω is a complex cube root of unity, then prove the following: (ω2 + ω - 1)3 = – 8


If ω is a complex cube root of unity, then prove the following:  (a + b) + (aω + bω2) + (aω2 + bω) = 0.


Find the value of ω–105


If ω is a complex cube root of unity, show that (2 + ω + ω2)3 − (1 − 3ω + ω2)3 = 65


If ω is a complex cube root of unity, show that (3 + 3ω + 5ω2)6 − (2 + 6ω + 2ω2)3 = 0


If ω is a complex cube root of unity, find the value of (1 + ω)(1 + ω2)(1 + ω4)(1 + ω8)


If α and β are the complex cube root of unity, show that α4 + β4 + α−1β−1 = 0


Find the equation in cartesian coordinates of the locus of z if |z – 3| = 2


Find the equation in cartesian coordinates of the locus of z if |z − 5 + 6i| = 5


Select the correct answer from the given alternatives:

If ω is a complex cube root of unity, then the value of ω99+ ω100 + ω101 is :


Answer the following:

If α and β are complex cube roots of unity, prove that (1 − α)(1 − β) (1 − α2)(1 − β2) = 9


Which of the following is the third root of `(1 + i)/sqrt2`? 


The value of the expression 1.(2 – ω) + (2 – ω2) + 2.(3 – ω)(3 – ω2) + ....... + (n – 1)(n – ω)(n – ω2), where ω is an imaginary cube root of unity is ______.


Simplify the following and express in the form a + ib.

`(3i^5 + 2i^7 + i^9)/(i^6 + 2i^8 + 3i^18)`


If w is a complex cube root of unity, show that

`((a + bw + cw^2)) /( c + aw + bw^2 )= w^2`


If w is a complex cube root of unity, show that `((a + bw +cw^2))/(c +aw + bw^2) = w^2`


If w is a complex cube-root of unity, then prove the following:

2 + ω − 1)3 = −8


If w is a complex cube root of unity, show that `((a + bw + cw^2))/(c+aw+bw^2) = w^2`


If ω is a complex cube-root of unity, then prove the following:

(a + b) + (aω + bω2) + (aω2 + bω) = 0


If ω is a complex cube-root of unity, then prove the following :

2 + ω − 1)3 = − 8


Find the value of `sqrt(-3) xx sqrt(-6)`.


If w is a complex cube-root of unity, then prove the following

(w2 + w - 1)3 = - 8


 Find the value of `sqrt(-3)xx sqrt (-6)`


If w is a complex cube root of unity, show that `((a+bw+cw^2))/(c+aw+bw^2)=w^2`


If w is a complex cube-root of unity, then prove the following. 

(w+ w - 1)= - 8


If w is a complex cube root of unity, show that `((a + bomega + comega^2))/(c + aomega + bomega^2) = w^2`


If ω is a complex cube root of unity, show that `((a + bomega + comega^2))/(c + aomega + bomega^2)=omega^2`


If ω is a complex cube root of unity, show that `((a + b\omega + c\omega^2))/(c + a\omega + b\omega^2) = \omega^2`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×