Advertisements
Advertisements
Question
Find the value of ω–105
Solution
ω3 = 1
ω–105
= (ω3)–35
= (1)–35
= `1/(1)^35`
= 1
APPEARS IN
RELATED QUESTIONS
If ω is a complex cube root of unity, show that (2 + ω + ω2)3 - (1 - 3ω + ω2)3 = 65
If ω is a complex cube root of unity, show that `(("a" + "b"omega + "c"omega^2))/("c" + "a"omega + "b"omega^2) = omega^2`.
If ω is a complex cube root of unity, find the value of `omega + 1/omega`
If ω is a complex cube root of unity, find the value of (1 + ω2)3
Find the value of ω–30
If ω is a complex cube root of unity, show that (1 + ω − ω2)6 = 64
If ω is a complex cube root of unity, show that (2 + ω + ω2)3 − (1 − 3ω + ω2)3 = 65
If ω is a complex cube root of unity, show that (a − b) (a − bω) (a − bω2) = a3 − b3
If ω is a complex cube root of unity, find the value of `ω + 1/ω`
If ω is a complex cube root of unity, find the value of (1 + ω2)3
If ω is a complex cube root of unity, find the value of (1 − ω − ω2)3 + (1 − ω + ω2)3
If ω is a complex cube root of unity, find the value of (1 + ω)(1 + ω2)(1 + ω4)(1 + ω8)
If α and β are the complex cube root of unity, show that α2 + β2 + αβ = 0
Find the equation in cartesian coordinates of the locus of z if |z| = 10
Find the equation in cartesian coordinates of the locus of z if |z – 3| = 2
Find the equation in cartesian coordinates of the locus of z if |z + 8| = |z – 4|
Find the equation in cartesian coordinates of the locus of z if |z – 2 – 2i| = |z + 2 + 2i|
Select the correct answer from the given alternatives:
If ω is a complex cube root of unity, then the value of ω99+ ω100 + ω101 is :
If ω(≠1) is a cube root of unity and (1 + ω)7 = A + Bω, then A and B are respectively the numbers ______.
Which of the following is the third root of `(1 + i)/sqrt2`?
If (1 + ω2)m = (1 + ω4)m and ω is an imaginary cube root of unity, then least positive integral value of m is ______.
Let z = `(1 - isqrt(3))/2`, i = `sqrt(-1)`. Then the value of `21 + (z + 1/z)^3 + (z^2 + 1/z^2) + (z^3 + 1/z^3)^3 + ...... + (z^21 + 1/z^21)^3` is ______.
The value of the expression 1.(2 – ω) + (2 – ω2) + 2.(3 – ω)(3 – ω2) + ....... + (n – 1)(n – ω)(n – ω2), where ω is an imaginary cube root of unity is ______.
If w is a complex cube root of unity, show that `((a+bw+cw^2))/(c+aw+bw^2) = w^2`
If w is a complex cube root of unity, show that
`((a + bw + cw^2)) /( c + aw + bw^2 )= w^2`
If w is a complex cube-root of unity, then prove the following:
(ω2 + ω − 1)3 = −8
If ω is a complex cube root of unity, then prove the following.
(ω2 + ω −1)3 = −8
If ω is a complex cube-root of unity, then prove the following:
(a + b) + (aω + bω2) + (aω2 + bω) = 0
If ω is a complex cube-root of unity, then prove the following:
(ω2 + ω −1)3 = −8
If ω is a complex cube-root of unity, then prove the following :
(ω2 + ω − 1)3 = − 8
Find the value of `sqrt(-3) xx sqrt(-6)`.
If ω is a complex cube root of unity, show that `((a + bomega + comega^2))/(c + aomega + bomega^2)=omega^2`
If ω is a complex cube-root of unity, then prove the following.
(ω2 + ω − 1)3 = −8