Advertisements
Advertisements
Question
If ω is a complex cube root of unity, show that (1 + ω − ω2)6 = 64
Solution
ω is the complex cube root of unity
∴ ω3 = 1 and 1 + ω + ω2 = 0
Also, 1 + ω2 = − ω, 1 + ω = − ω2 and ω + ω2 = − 1
L.H.S. = (1 + ω − ω2)6
= [(1 + ω) − ω2]6
= (−ω2 − ω2)6
= (−2ω2)6
= 64.ω12
= 64(ω3)4
= 64(1)4
= 64
= R.H.S.
APPEARS IN
RELATED QUESTIONS
If ω is a complex cube root of unity, find the value of (1 + ω2)3
If ω is a complex cube root of unity, find the value of (1 - ω - ω2)3 + (1 - ω + ω2)3
If ω is a complex cube root of unity, then prove the following: (ω2 + ω - 1)3 = – 8
If ω is a complex cube root of unity, then prove the following: (a + b) + (aω + bω2) + (aω2 + bω) = 0.
Find the value of ω–30
Find the value of ω–105
If ω is a complex cube root of unity, show that (2 + ω + ω2)3 − (1 − 3ω + ω2)3 = 65
If ω is a complex cube root of unity, show that (3 + 3ω + 5ω2)6 − (2 + 6ω + 2ω2)3 = 0
If ω is a complex cube root of unity, find the value of ω2 + ω3 + ω4
If α and β are the complex cube root of unity, show that α4 + β4 + α−1β−1 = 0
If , where α and β are the complex cube-roots of unity, show that xyz = a3 + b3.
Find the equation in cartesian coordinates of the locus of z if |z| = 10
Find the equation in cartesian coordinates of the locus of z if |z – 3| = 2
Find the equation in cartesian coordinates of the locus of z if |z + 8| = |z – 4|
Find the equation in cartesian coordinates of the locus of z if |z – 2 – 2i| = |z + 2 + 2i|
Select the correct answer from the given alternatives:
If ω is a complex cube root of unity, then the value of ω99+ ω100 + ω101 is :
Answer the following:
If α and β are complex cube roots of unity, prove that (1 − α)(1 − β) (1 − α2)(1 − β2) = 9
Answer the following:
If ω is a complex cube root of unity, prove that (1 − ω + ω2)6 +(1 + ω − ω2)6 = 128
Which of the following is the third root of `(1 + i)/sqrt2`?
If (1 + ω2)m = (1 + ω4)m and ω is an imaginary cube root of unity, then least positive integral value of m is ______.
If α, β, γ are the cube roots of p (p < 0), then for any x, y and z, `(xalpha + "y"beta + "z"gamma)/(xbeta + "y"gamma + "z"alpha)` = ______.
The value of the expression 1.(2 – ω) + (2 – ω2) + 2.(3 – ω)(3 – ω2) + ....... + (n – 1)(n – ω)(n – ω2), where ω is an imaginary cube root of unity is ______.
If the cube roots of the unity are 1, ω and ω2, then the roots of the equation (x – 1)3 + 8 = 0, are ______.
If w is a complex cube root of unity, show that, `((a + bw + cw^2))/(c + aw + bw^2) = w^2`
If w is a complex cube-root of unity, then prove the following:
(ω2 + ω − 1)3 = −8
If ω is a complex cube-root of unity, then prove the following:
(ω2 + ω −1)3 = −8
If ω is a complex cube-root of unity, then prove the following :
(ω2 + ω − 1)3 = − 8
If w is a complex cube-root of unity, then prove the following
(w2 + w - 1)3 = - 8
If w is a complex cube root of unity, show that `((a+bw+cw^2))/(c+aw+bw^2) = w^2`
If w is a complex cube root of unity, show that `((a + bw + cw^2))/(c + aw + bw^2) = w^2`
If w is a complex cube root of unity, show that `((a+bw+cw^2))/(c+aw+bw^2)=w^2`
If ω is a complex cube root of unity, show that `((a + bomega + comega^2))/(c + aomega + bomega^2)=omega^2`