English

If α and β are the complex cube root of unity, show that α4 + β4 + α−1β−1 = 0 - Mathematics and Statistics

Advertisements
Advertisements

Question

If α and β are the complex cube root of unity, show that α4 + β4 + α−1β−1 = 0

Sum

Solution

α and β are the complex cube roots of unity

∴ α = `(-1 + "i"sqrt(3))/2` and β = `(-1 - "i"sqrt(3))/2`

∴ αβ = `((-1 + "i"sqrt(3))/2)((-1 - "i"sqrt(3))/2)`

= `((-1)^2 - ("i"sqrt(3))^2)/4`

= `(1 - (-1)(3))/4`

= `(1 + 3)/4`

∴ αβ = 1

Also, α + β = `(-1 + "i"sqrt(3))/2 + (-1 - "i"sqrt(3))/2`

= `(-1 + "i"sqrt(3) - 1 - "i"sqrt(3))/2`

= `(-2)/2`

∴ α + β = – 1

α4 + β4 + α−1β−1 

= `α^4 + β^4 + 2α^2β^2 - 2α^2β^2 + 1/"αβ"`  ...[Adding and subtracting 2α2β2]

= `(α^2 + β^2)^2 - 2α^2β^2 + 1/"αβ"`

= `[(α + β)^2 - 2αβ]^2 - 2(αβ)^2 + 1/"αβ"`

= `[(-1)^2 - 2(1)]^2 - 2(1)^2 + 1/1`

= (1 – 2)2 – 2 + 1

= (– 1)2 – 1

= 1 – 1

= 0

shaalaa.com
Cube Root of Unity
  Is there an error in this question or solution?
Chapter 1: Complex Numbers - Exercise 1.4 [Page 20]

RELATED QUESTIONS

If `omega` is a complex cube root of unity, show that `(2 - omega)(2 - omega^2)` = 7


If ω is a complex cube root of unity, show that (2 + ω + ω2)3 - (1 - 3ω + ω2)3 = 65


If `omega` is a complex cube root of unity, find the value of `(1 + omega)(1 + omega^2)(1 + omega^4)(1 + omega^8)`


If α and β are the complex cube roots of unity, show that α2 + β2 + αβ = 0.


If x = a + b, y = αa + βb and z = aβ + bα, where α and β are the complex cube roots of unity, show that xyz = a3 + b3.


If ω is a complex cube root of unity, then prove the following: (ω2 + ω - 1)3 = – 8


If ω is a complex cube root of unity, then prove the following:  (a + b) + (aω + bω2) + (aω2 + bω) = 0.


Find the value of ω21


If ω is a complex cube root of unity, show that (2 − ω)(2 − ω2) = 7


If ω is a complex cube root of unity, show that (a + b) + (aω + bω2) + (aω2 + bω) = 0


If ω is a complex cube root of unity, show that (a − b) (a − bω) (a − bω2) = a3 − b3


If ω is a complex cube root of unity, show that (a + b)2 + (aω + bω2)2 + (aω2 + bω)2 = 6ab


If ω is a complex cube root of unity, find the value of `ω + 1/ω`


If ω is a complex cube root of unity, find the value of (1 + ω)(1 + ω2)(1 + ω4)(1 + ω8)


If , where α and β are the complex cube-roots of unity, show that xyz = a3 + b3.


Find the equation in cartesian coordinates of the locus of z if |z − 5 + 6i| = 5


Select the correct answer from the given alternatives:

If ω is a complex cube root of unity, then the value of ω99+ ω100 + ω101 is :


Answer the following:

If ω is a complex cube root of unity, prove that (1 − ω + ω2)6 +(1 + ω − ω2)6 = 128


Let α be a root of the equation 1 + x2 + x4 = 0. Then the value of α1011 + α2022 – α3033 is equal to ______.


The value of the expression 1.(2 – ω) + (2 – ω2) + 2.(3 – ω)(3 – ω2) + ....... + (n – 1)(n – ω)(n – ω2), where ω is an imaginary cube root of unity is ______.


If the cube roots of the unity are 1, ω and ω2, then the roots of the equation (x – 1)3 + 8 = 0, are ______.


Simplify the following and express in the form a + ib.

`(3i^5 + 2i^7 + i^9)/(i^6 + 2i^8 + 3i^18)`


If w is a complex cube root of unity, show that `((a+bw+cw^2))/(c+aw+bw^2) = w^2`


If w is a complex cube root of unity, show that

`((a + bw + cw^2)) /( c + aw + bw^2 )= w^2`


If w is a complex cube root of unity, show that `((a + bw +cw^2))/(c +aw + bw^2) = w^2`


If w is a complex cube-root of unity, then prove the following:

2 + ω − 1)3 = −8


If w is a complex cube root of unity, show that `((a + bw + cw^2))/(c+aw+bw^2) = w^2`


If ω is a complex cube root of unity, then prove the following.

2 + ω −1)3 = −8


If ω is a complex cube-root of unity, then prove the following:

(a + b) + (aω + bω2) + (aω2 + bω) = 0


If ω is a complex cube-root of unity, then prove the following:

2 + ω −1)3 = −8


If ω is a complex cube-root of unity, then prove the following :

2 + ω − 1)3 = − 8


If w is a complex cube root of unity, show that `((a+bw+cw^2))/(c+aw+bw^2)=w^2`


If ω is a complex cube root of unity, show that `((a + bomega + comega^2))/(c + aomega + bomega^2)=omega^2`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×