English

If α and β are the complex cube roots of unity, show that α2 + β2 + αβ = 0. - Mathematics and Statistics

Advertisements
Advertisements

Question

If α and β are the complex cube roots of unity, show that α2 + β2 + αβ = 0.

Sum

Solution

α and β are the complex cube roots of unity.

∴ α = `(-1 + "i"sqrt(3))/2 and beta = (-1 - "i"sqrt(3))/2`

∴ αβ = `((- 1 + "i"sqrt(3))/2)((-1 - "i"sqrt(3))/2)`

= `((-1)^2 - (isqrt(3))^2)/4`

= `(1 - (-1)(3))/4`       ...[∵ i2 = – 1]

= `(1 + 3)/4`

∴ αβ = 1

Also, α + β = `(-1 + "i"sqrt(3))/2 + (-1 - "i"sqrt(3))/2`

= `(-1 + "i"sqrt(3) - 1 - "i" sqrt(3))/2`

= `(-2)/2`

∴ α + β = – 1

L.H.S. = α2 + β2 + αβ
= α2 + 2αβ + β2 + αβ – 2αβ   ...[Adding and subtracting 2αβ]
= (α2 + 2αβ + β2) – αβ
= (α + β)2 – αβ
= (– 1)2 – 1 
= 1 – 1
= 0 = R.H.S.

shaalaa.com
Cube Root of Unity
  Is there an error in this question or solution?
Chapter 3: Complex Numbers - EXERCISE 3.3 [Page 42]

APPEARS IN

RELATED QUESTIONS

If ω is a complex cube root of unity, find the value of ω2 + ω3 + ω4.


If ω is a complex cube root of unity, then prove the following: (ω2 + ω - 1)3 = – 8


Find the value of ω18


Find the value of ω–105


If ω is a complex cube root of unity, find the value of (1 + ω)(1 + ω2)(1 + ω4)(1 + ω8)


Find the equation in cartesian coordinates of the locus of z if |z – 3| = 2


Find the equation in cartesian coordinates of the locus of z if |z − 5 + 6i| = 5


If ω(≠1) is a cube root of unity and (1 + ω)7 = A + Bω, then A and B are respectively the numbers ______.


Answer the following:

If α and β are complex cube roots of unity, prove that (1 − α)(1 − β) (1 − α2)(1 − β2) = 9


Answer the following:

If ω is a complex cube root of unity, prove that (1 − ω + ω2)6 +(1 + ω − ω2)6 = 128


Which of the following is the third root of `(1 + i)/sqrt2`? 


If (1 + ω2)m = (1 + ω4)m and ω is an imaginary cube root of unity, then least positive integral value of m is ______.


Let z = `(1 - isqrt(3))/2`, i = `sqrt(-1)`. Then the value of `21 + (z + 1/z)^3 + (z^2 + 1/z^2) + (z^3 + 1/z^3)^3 + ...... + (z^21 + 1/z^21)^3` is ______.


If w is a complex cube root of unity, show that `((a + bw + cw^2))/(c+aw+bw^2) = w^2`


If w is a complex cube-root of unity, then prove the following

(w2 + w - 1)3 = - 8


If w is a complex cube root of unity, show that `((a+bw+cw^2))/(c+aw+bw^2) = w^2`


If w is a complex cube root of unity, show that `((a + bw + cw^2))/(c + aw + bw^2) = w^2`


If w is a complex cube root of unity, show that `((a+bw+cw^2))/(c+aw+bw^2)=w^2`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×