English

Find the equation in cartesian coordinates of the locus of z if |z − 5 + 6i| = 5 - Mathematics and Statistics

Advertisements
Advertisements

Question

Find the equation in cartesian coordinates of the locus of z if |z − 5 + 6i| = 5

Sum

Solution

Let z = x + iy

|z − 5 + 6i| = 5

∴ |x + iy − 5 + 6i| = 5

∴ |(x − 5) + i (y + 6)| = 5

∴ `sqrt((x - 5)^2 + (y + 6)^2)` = 5

∴ (x − 5)2 + (y + 6)2 = 25

shaalaa.com
Cube Root of Unity
  Is there an error in this question or solution?
Chapter 1: Complex Numbers - Exercise 1.4 [Page 20]

APPEARS IN

RELATED QUESTIONS

If `omega` is a complex cube root of unity, show that `(2 - omega)(2 - omega^2)` = 7


If ω is a complex cube root of unity, show that `(("a" + "b"omega + "c"omega^2))/("c" + "a"omega + "b"omega^2) = omega^2`.


If α and β are the complex cube roots of unity, show that α2 + β2 + αβ = 0.


If x = a + b, y = αa + βb and z = aβ + bα, where α and β are the complex cube roots of unity, show that xyz = a3 + b3.


Find the value of ω18


If ω is a complex cube root of unity, show that (1 + ω)3 − (1 + ω2)3 = 0


If ω is a complex cube root of unity, show that (2 + ω + ω2)3 − (1 − 3ω + ω2)3 = 65


If ω is a complex cube root of unity, show that `("a" + "b"ω + "c"ω^2)/("c" + "a"ω + "b"ω^2)` = ω2


If ω is a complex cube root of unity, show that (a + b) + (aω + bω2) + (aω2 + bω) = 0


If ω is a complex cube root of unity, find the value of (1 − ω − ω2)3 + (1 − ω + ω2)3


If ω is a complex cube root of unity, find the value of (1 + ω)(1 + ω2)(1 + ω4)(1 + ω8)


If α and β are the complex cube root of unity, show that α4 + β4 + α−1β−1 = 0


If , where α and β are the complex cube-roots of unity, show that xyz = a3 + b3.


Select the correct answer from the given alternatives:

If ω is a complex cube root of unity, then the value of ω99+ ω100 + ω101 is :


If ω(≠1) is a cube root of unity and (1 + ω)7 = A + Bω, then A and B are respectively the numbers ______.


If ω is the cube root of unity then find the value of `((-1 + "i"sqrt(3))/2)^18 + ((-1 - "i"sqrt(3))/2)^18`


Let α be a root of the equation 1 + x2 + x4 = 0. Then the value of α1011 + α2022 – α3033 is equal to ______.


If 1, α1, α2, ...... αn–1 are the roots of unity, then (1 + α1)(1 + α2) ...... (1 + αn–1) is equal to (when n is even) ______.


Simplify the following and express in the form a + ib.

`(3i^5 + 2i^7 + i^9)/(i^6 + 2i^8 + 3i^18)`


If w is a complex cube root of unity, show that `((a+bw+cw^2))/(c+aw+bw^2) = w^2`


If w is a complex cube root of unity, show that

`((a + bw + cw^2)) /( c + aw + bw^2 )= w^2`


If w is a complex cube root of unity, show that, `((a + bw + cw^2))/(c + aw + bw^2) = w^2`


If w is a complex cube-root of unity, then prove the following:

2 + ω − 1)3 = −8


If w is a complex cube root of unity, show that `((a + bω + cω^2))/(c + aω + bω^2) = ω^2`


If ω is a complex cube-root of unity, then prove the following:

2 + ω −1)3 = −8


If ω is a complex cube-root of unity, then prove the following :

2 + ω − 1)3 = − 8


Find the value of `sqrt(-3) xx sqrt(-6)`.


If w is a complex cube-root of unity, then prove the following

(w2 + w - 1)3 = - 8


If ω is a complex cube-root of unity, then prove the following:

2 + ω − 1)3 = −8


 Find the value of `sqrt(-3)xx sqrt (-6)`


If w is a complex cube root of unity, show that `((a + bomega + comega^2))/(c + aomega + bomega^2) = w^2`


If ω is a complex cube root of unity, show that `((a + b\omega + c\omega^2))/(c + a\omega + b\omega^2) = \omega^2`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×