Advertisements
Advertisements
Question
If ω is the cube root of unity then find the value of `((-1 + "i"sqrt(3))/2)^18 + ((-1 - "i"sqrt(3))/2)^18`
Solution 1
`((-1 + "i"sqrt(3))/2)^3`
`=((-1)^3 + 3(-1)^2("i"sqrt(3)) + 3(-1)("i"sqrt(3))^2 + ("i"sqrt(3))^3)/8`
= `(-1 + 3(1)("i"sqrt(3)) - 3(3"i"^2) + 3sqrt(3)"i"^3)/8`
= `(-1 + 3sqrt(3)"i" + 9 - 3sqrt(3)"i")/8` ...[∵ i2 = – 1, i3 = – i]
= `8/8`
= 1 .......(1)
Also, `((-1 - "i"sqrt(3))/2)^3`
`=((-1)^3 - 3(-1)^2("i"sqrt(3)) + 3(-1)("i"sqrt(3))^2 - ("i"sqrt(3))^3)/8`
= `(-1 - 3(1)("i"sqrt(3)) - 3(3"i"^2) - 3sqrt(3)"i"^3)/8`
= `(-1 - 3sqrt(3)"i" + 9 + 3sqrt(3)"i")/8` ...[∵ i2 = – 1, i3 = – i]
= `8/8`
= 1 .........(2)
∴ `((-1 + "i"sqrt(3))/2)^18 + [((-1 - "i"sqrt(3))/2)^2]^18`
= `[((-1 + "i"sqrt(3))/2)^3]^6 + [((-1 - "i"sqrt(3))/2)^36]`
= `[((-1 + "i"sqrt(3))/2)^3]^6 + [((-1 - "i"sqrt(3))/2)^3]^12`
= (1)6 + (1)12 ........[By (1) and (2)]
= 1 + 1
= 2
Solution 2
If ω is the complex cube root of unity, then
ω3 = 1, ω = `(-1 + isqrt3)/2` and ω2 = `(-1 - isqrt3)/2`
Consider,
`((-1 + isqrt3)/2)^18` + `((-1 - isqrt3)/2)^18`
Given Expression = ω18 + (ω2)18
= ω18 + ω36
= (ω3)6 + (ω3)12
= (1)6 + (1)12
= 1 + 1
= 2
APPEARS IN
RELATED QUESTIONS
If `omega` is a complex cube root of unity, show that `(2 - omega)(2 - omega^2)` = 7
If ω is a complex cube root of unity, show that `(("a" + "b"omega + "c"omega^2))/("c" + "a"omega + "b"omega^2) = omega^2`.
If ω is a complex cube root of unity, find the value of `omega + 1/omega`
If ω is a complex cube root of unity, find the value of ω2 + ω3 + ω4.
If ω is a complex cube root of unity, find the value of (1 + ω2)3
If ω is a complex cube root of unity, then prove the following: (a + b) + (aω + bω2) + (aω2 + bω) = 0.
Find the value of ω18
Find the value of ω21
If ω is a complex cube root of unity, show that (1 + ω − ω2)6 = 64
If ω is a complex cube root of unity, show that (1 + ω)3 − (1 + ω2)3 = 0
If ω is a complex cube root of unity, show that `("a" + "b"ω + "c"ω^2)/("c" + "a"ω + "b"ω^2)` = ω2
If ω is a complex cube root of unity, show that (a + b) + (aω + bω2) + (aω2 + bω) = 0
If ω is a complex cube root of unity, find the value of ω2 + ω3 + ω4
If ω is a complex cube root of unity, find the value of (1 − ω − ω2)3 + (1 − ω + ω2)3
If , where α and β are the complex cube-roots of unity, show that xyz = a3 + b3.
Find the equation in cartesian coordinates of the locus of z if |z − 5 + 6i| = 5
Answer the following:
If α and β are complex cube roots of unity, prove that (1 − α)(1 − β) (1 − α2)(1 − β2) = 9
If α, β, γ are the cube roots of p (p < 0), then for any x, y and z, `(xalpha + "y"beta + "z"gamma)/(xbeta + "y"gamma + "z"alpha)` = ______.
Let α be a root of the equation 1 + x2 + x4 = 0. Then the value of α1011 + α2022 – α3033 is equal to ______.
Let z = `(1 - isqrt(3))/2`, i = `sqrt(-1)`. Then the value of `21 + (z + 1/z)^3 + (z^2 + 1/z^2) + (z^3 + 1/z^3)^3 + ...... + (z^21 + 1/z^21)^3` is ______.
If 1, α1, α2, ...... αn–1 are the roots of unity, then (1 + α1)(1 + α2) ...... (1 + αn–1) is equal to (when n is even) ______.
If the cube roots of the unity are 1, ω and ω2, then the roots of the equation (x – 1)3 + 8 = 0, are ______.
If w is a complex cube root of unity, show that
`((a + bw + cw^2)) /( c + aw + bw^2 )= w^2`
If w is a complex cube root of unity, show that `((a + bw +cw^2))/(c +aw + bw^2) = w^2`
If w is a complex cube root of unity, show that `((a+bw+cw^2))/(c+aw+bw^2) =w^2`
If ω is a complex cube-root of unity, then prove the following:
(a + b) + (aω + bω2) + (aω2 + bω) = 0
Find the value of `sqrt(-3) xx sqrt(-6)`.
If w is a complex cube-root of unity, then prove the following
(w2 + w - 1)3 = - 8
Find the value of `sqrt(-3)xx sqrt (-6)`
If w is a complex cube root of unity, show that `((a+bw+cw^2))/(c+aw+bw^2) = w^2`
If w is a complex cube root of unity, show that `((a+bw+cw^2))/(c+aw+bw^2)=w^2`
If ω is a complex cube root of unity, show that `((a + bomega + comega^2))/(c + aomega + bomega^2)=omega^2`
If ω is a complex cube root of unity, show that `((a + b\omega + c\omega^2))/(c + a\omega + b\omega^2) = \omega^2`