English

If ω is a complex cube root of unity, find the value of (1+ω2)3 - Mathematics and Statistics

Advertisements
Advertisements

Question

If ω is a complex cube root of unity, find the value of (1 + ω2)3

Sum

Solution

ω is a complex cube root of unity
∴ ω3 = 1 and 1 + ω + ω2 = 0

Also, 1 + ω2 = - ω, 1 + ω = -  ω2 and ω + ω2 = – 1

(1 + ω2)= (- ω)3 = - ω3 = - 1

shaalaa.com
Cube Root of Unity
  Is there an error in this question or solution?
Chapter 3: Complex Numbers - EXERCISE 3.3 [Page 42]

APPEARS IN

RELATED QUESTIONS

If ω is a complex cube root of unity, find the value of (1 - ω - ω2)3 + (1 - ω + ω2)3


If x = a + b, y = αa + βb and z = aβ + bα, where α and β are the complex cube roots of unity, show that xyz = a3 + b3.


If ω is a complex cube root of unity, show that (2 − ω)(2 − ω2) = 7


If ω is a complex cube root of unity, show that (2 + ω + ω2)3 − (1 − 3ω + ω2)3 = 65


If ω is a complex cube root of unity, find the value of `ω + 1/ω`


If ω is a complex cube root of unity, find the value of (1 − ω − ω2)3 + (1 − ω + ω2)3


Find the equation in cartesian coordinates of the locus of z if |z| = 10


Find the equation in cartesian coordinates of the locus of z if |z + 8| = |z – 4|


Answer the following:

If α and β are complex cube roots of unity, prove that (1 − α)(1 − β) (1 − α2)(1 − β2) = 9


Let α be a root of the equation 1 + x2 + x4 = 0. Then the value of α1011 + α2022 – α3033 is equal to ______.


Let z = `(1 - isqrt(3))/2`, i = `sqrt(-1)`. Then the value of `21 + (z + 1/z)^3 + (z^2 + 1/z^2) + (z^3 + 1/z^3)^3 + ...... + (z^21 + 1/z^21)^3` is ______.


If w is a complex cube root of unity, show that `((a+bw+cw^2))/(c+aw+bw^2) =w^2`


If ω is a complex cube-root of unity, then prove the following:

(a + b) + (aω + bω2) + (aω2 + bω) = 0


If w is a complex cube root of unity, show that `((a + bω + cω^2))/(c + aω + bω^2) = ω^2`


If ω is a complex cube-root of unity, then prove the following:

2 + ω − 1)3 = −8


If w is a complex cube root of unity, show that `((a + bw + cw^2))/(c + aw + bw^2) = w^2`


If w is a complex cube root of unity, show that `((a+bw+cw^2))/(c+aw+bw^2)=w^2`


If ω is a complex cube-root of unity, then prove the following.

2 + ω − 1)3 = −8


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×