English

If ω is a complex cube root of unity, find the value of (1 - ω - ω2)3 + (1 - ω + ω2)3 - Mathematics and Statistics

Advertisements
Advertisements

Question

If ω is a complex cube root of unity, find the value of (1 - ω - ω2)3 + (1 - ω + ω2)3

Sum

Solution

ω is a complex cube root of unity
∴ ω3 = 1 and 1 + ω + ω2 = 0

Also, 1 + ω2 = - ω, 1 + ω = -  ω2 and ω + ω2 = – 1

(1 - ω - ω2)3 + (1 - ω + ω2)3

= [1 - (ω + ω2)]3 + [(1 + ω2) - ω]3

= [1 - (-1)]3 + (- ω - ω)3

= 23 + (- 2ω)3

= 8 - 8ω3 = 8 – 8(1) = 0

shaalaa.com
Cube Root of Unity
  Is there an error in this question or solution?
Chapter 3: Complex Numbers - EXERCISE 3.3 [Page 42]

APPEARS IN

RELATED QUESTIONS

If ω is a complex cube root of unity, find the value of (1 + ω2)3


If `omega` is a complex cube root of unity, find the value of `(1 + omega)(1 + omega^2)(1 + omega^4)(1 + omega^8)`


If x = a + b, y = αa + βb and z = aβ + bα, where α and β are the complex cube roots of unity, show that xyz = a3 + b3.


If ω is a complex cube root of unity, show that (1 + ω − ω2)6 = 64


If ω is a complex cube root of unity, show that (1 + ω)3 − (1 + ω2)3 = 0


If ω is a complex cube root of unity, show that (3 + 3ω + 5ω2)6 − (2 + 6ω + 2ω2)3 = 0


If ω is a complex cube root of unity, show that (a + b)2 + (aω + bω2)2 + (aω2 + bω)2 = 6ab


If ω is a complex cube root of unity, find the value of (1 − ω − ω2)3 + (1 − ω + ω2)3


Find the equation in cartesian coordinates of the locus of z if |z − 5 + 6i| = 5


Find the equation in cartesian coordinates of the locus of z if |z + 8| = |z – 4|


Answer the following:

If ω is a complex cube root of unity, prove that (1 − ω + ω2)6 +(1 + ω − ω2)6 = 128


Let z = `(1 - isqrt(3))/2`, i = `sqrt(-1)`. Then the value of `21 + (z + 1/z)^3 + (z^2 + 1/z^2) + (z^3 + 1/z^3)^3 + ...... + (z^21 + 1/z^21)^3` is ______.


If w is a complex cube root of unity, show that `((a + bw +cw^2))/(c +aw + bw^2) = w^2`


If w is a complex cube root of unity, show that `((a + bw + cw^2))/(c+aw+bw^2) = w^2`


If ω is a complex cube root of unity, then prove the following.

2 + ω −1)3 = −8


Find the value of `sqrt(-3) xx sqrt(-6)`.


If ω is a complex cube-root of unity, then prove the following:

2 + ω − 1)3 = −8


If w is a complex cube root of unity, show that `((a + bw + cw^2))/(c + aw + bw^2) = w^2`


If w is a complex cube-root of unity, then prove the following. 

(w+ w - 1)= - 8


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×