English

Find the equation in cartesian coordinates of the locus of z if |z – 3| = 2 - Mathematics and Statistics

Advertisements
Advertisements

Question

Find the equation in cartesian coordinates of the locus of z if |z – 3| = 2

Sum

Solution

Let z = x + iy, then

|z – 3| = 2 gives

|x + iy – 3| = 2

∴ |(x –  3) + iy| = 2

∴ `sqrt((x - 3)^2 + y^2)` = 2

∴ (x –  3)2 + y2 = 4

This is the equation of the required locus.

shaalaa.com
Cube Root of Unity
  Is there an error in this question or solution?
Chapter 1: Complex Numbers - Exercise 1.4 [Page 20]

RELATED QUESTIONS

If ω is a complex cube root of unity, show that `(("a" + "b"omega + "c"omega^2))/("c" + "a"omega + "b"omega^2) = omega^2`.


If ω is a complex cube root of unity, find the value of (1 + ω2)3


If α and β are the complex cube roots of unity, show that α2 + β2 + αβ = 0.


If ω is a complex cube root of unity, then prove the following:  (a + b) + (aω + bω2) + (aω2 + bω) = 0.


Find the value of ω21


Find the value of ω–105


If ω is a complex cube root of unity, show that (2 − ω)(2 − ω2) = 7


If ω is a complex cube root of unity, show that (a + b)2 + (aω + bω2)2 + (aω2 + bω)2 = 6ab


If ω is a complex cube root of unity, find the value of (1 + ω2)3


If , where α and β are the complex cube-roots of unity, show that xyz = a3 + b3.


Find the equation in cartesian coordinates of the locus of z if |z − 5 + 6i| = 5


Find the equation in cartesian coordinates of the locus of z if |z + 8| = |z – 4|


Find the equation in cartesian coordinates of the locus of z if |z – 2 – 2i| = |z + 2 + 2i|


Select the correct answer from the given alternatives:

If ω is a complex cube root of unity, then the value of ω99+ ω100 + ω101 is :


If ω(≠1) is a cube root of unity and (1 + ω)7 = A + Bω, then A and B are respectively the numbers ______.


Let α be a root of the equation 1 + x2 + x4 = 0. Then the value of α1011 + α2022 – α3033 is equal to ______.


Let z = `(1 - isqrt(3))/2`, i = `sqrt(-1)`. Then the value of `21 + (z + 1/z)^3 + (z^2 + 1/z^2) + (z^3 + 1/z^3)^3 + ...... + (z^21 + 1/z^21)^3` is ______.


If 1, α1, α2, ...... αn–1 are the roots of unity, then (1 + α1)(1 + α2) ...... (1 + αn–1) is equal to (when n is even) ______.


The value of the expression 1.(2 – ω) + (2 – ω2) + 2.(3 – ω)(3 – ω2) + ....... + (n – 1)(n – ω)(n – ω2), where ω is an imaginary cube root of unity is ______.


If the cube roots of the unity are 1, ω and ω2, then the roots of the equation (x – 1)3 + 8 = 0, are ______.


If w is a complex cube root of unity, show that `((a+bw+cw^2))/(c+aw+bw^2) = w^2`


If w is a complex cube root of unity, show that

`((a + bw + cw^2)) /( c + aw + bw^2 )= w^2`


If w is a complex cube root of unity, show that, `((a + bw + cw^2))/(c + aw + bw^2) = w^2`


If w is a complex cube root of unity, show that `((a + bw +cw^2))/(c +aw + bw^2) = w^2`


If w is a complex cube root of unity, show that `((a + bw + cw^2))/(c+aw+bw^2) = w^2`


If ω is a complex cube-root of unity, then prove the following:

(a + b) + (aω + bω2) + (aω2 + bω) = 0


If ω is a complex cube-root of unity, then prove the following :

2 + ω − 1)3 = − 8


If ω is a complex cube-root of unity, then prove the following:

2 + ω − 1)3 = −8


 Find the value of `sqrt(-3)xx sqrt (-6)`


If w is a complex cube root of unity, show that `((a+bw+cw^2))/(c+aw+bw^2) = w^2`


If w is a complex cube root of unity, show that `((a + bomega + comega^2))/(c + aomega + bomega^2) = w^2`


If ω is a complex cube root of unity, show that `((a + bomega + comega^2))/(c + aomega + bomega^2)=omega^2`


If ω is a complex cube-root of unity, then prove the following.

2 + ω − 1)3 = −8


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×