Advertisements
Advertisements
Question
Find the equation in cartesian coordinates of the locus of z if |z – 3| = 2
Solution
Let z = x + iy, then
|z – 3| = 2 gives
|x + iy – 3| = 2
∴ |(x – 3) + iy| = 2
∴ `sqrt((x - 3)^2 + y^2)` = 2
∴ (x – 3)2 + y2 = 4
This is the equation of the required locus.
APPEARS IN
RELATED QUESTIONS
If ω is a complex cube root of unity, show that `(("a" + "b"omega + "c"omega^2))/("c" + "a"omega + "b"omega^2) = omega^2`.
If ω is a complex cube root of unity, find the value of (1 + ω2)3
If α and β are the complex cube roots of unity, show that α2 + β2 + αβ = 0.
If ω is a complex cube root of unity, then prove the following: (a + b) + (aω + bω2) + (aω2 + bω) = 0.
Find the value of ω21
Find the value of ω–105
If ω is a complex cube root of unity, show that (2 − ω)(2 − ω2) = 7
If ω is a complex cube root of unity, show that (a + b)2 + (aω + bω2)2 + (aω2 + bω)2 = 6ab
If ω is a complex cube root of unity, find the value of (1 + ω2)3
If , where α and β are the complex cube-roots of unity, show that xyz = a3 + b3.
Find the equation in cartesian coordinates of the locus of z if |z − 5 + 6i| = 5
Find the equation in cartesian coordinates of the locus of z if |z + 8| = |z – 4|
Find the equation in cartesian coordinates of the locus of z if |z – 2 – 2i| = |z + 2 + 2i|
Select the correct answer from the given alternatives:
If ω is a complex cube root of unity, then the value of ω99+ ω100 + ω101 is :
If ω(≠1) is a cube root of unity and (1 + ω)7 = A + Bω, then A and B are respectively the numbers ______.
Let α be a root of the equation 1 + x2 + x4 = 0. Then the value of α1011 + α2022 – α3033 is equal to ______.
Let z = `(1 - isqrt(3))/2`, i = `sqrt(-1)`. Then the value of `21 + (z + 1/z)^3 + (z^2 + 1/z^2) + (z^3 + 1/z^3)^3 + ...... + (z^21 + 1/z^21)^3` is ______.
If 1, α1, α2, ...... αn–1 are the roots of unity, then (1 + α1)(1 + α2) ...... (1 + αn–1) is equal to (when n is even) ______.
The value of the expression 1.(2 – ω) + (2 – ω2) + 2.(3 – ω)(3 – ω2) + ....... + (n – 1)(n – ω)(n – ω2), where ω is an imaginary cube root of unity is ______.
If the cube roots of the unity are 1, ω and ω2, then the roots of the equation (x – 1)3 + 8 = 0, are ______.
If w is a complex cube root of unity, show that `((a+bw+cw^2))/(c+aw+bw^2) = w^2`
If w is a complex cube root of unity, show that
`((a + bw + cw^2)) /( c + aw + bw^2 )= w^2`
If w is a complex cube root of unity, show that, `((a + bw + cw^2))/(c + aw + bw^2) = w^2`
If w is a complex cube root of unity, show that `((a + bw +cw^2))/(c +aw + bw^2) = w^2`
If w is a complex cube root of unity, show that `((a + bw + cw^2))/(c+aw+bw^2) = w^2`
If ω is a complex cube-root of unity, then prove the following:
(a + b) + (aω + bω2) + (aω2 + bω) = 0
If ω is a complex cube-root of unity, then prove the following :
(ω2 + ω − 1)3 = − 8
If ω is a complex cube-root of unity, then prove the following:
(ω2 + ω − 1)3 = −8
Find the value of `sqrt(-3)xx sqrt (-6)`
If w is a complex cube root of unity, show that `((a+bw+cw^2))/(c+aw+bw^2) = w^2`
If w is a complex cube root of unity, show that `((a + bomega + comega^2))/(c + aomega + bomega^2) = w^2`
If ω is a complex cube root of unity, show that `((a + bomega + comega^2))/(c + aomega + bomega^2)=omega^2`
If ω is a complex cube-root of unity, then prove the following.
(ω2 + ω − 1)3 = −8