English

If α and β are the complex cube root of unity, show that α2 + β2 + αβ = 0 - Mathematics and Statistics

Advertisements
Advertisements

Question

If α and β are the complex cube root of unity, show that α2 + β2 + αβ = 0

Sum

Solution

α and β are the complex cube roots of unity.

∴ α = `(-1 + "i"sqrt(3))/2` and β = `(-1 - "i"sqrt(3))/2`

∴ α + β = `(-1 + "i"sqrt(3))/2 + (-1 - "i" sqrt(3))/2`

= `(-1 + "i"sqrt(3) - 1 - "i"sqrt(3))/2`

= `(-2)/2`

= – 1

and αβ = `((-1 + "i"sqrt(3))/2)((-1 - "i"sqrt(3))/2)`

= `((-1)^2 - ("i"sqrt(3))^2)/4`

= `(1 - 3"i"^2)/4`

= `(1 + 3)/4`

= 1 ..........[∵ i2 = – 1]

α2 + β2 + aβ = (α + β)2 – αβ

= (–  1)2 –  1

= 1 – 1

= 0

shaalaa.com
Cube Root of Unity
  Is there an error in this question or solution?
Chapter 1: Complex Numbers - Exercise 1.4 [Page 20]

RELATED QUESTIONS

If `omega` is a complex cube root of unity, show that `(2 - omega)(2 - omega^2)` = 7


If ω is a complex cube root of unity, show that (2 + ω + ω2)3 - (1 - 3ω + ω2)3 = 65


If ω is a complex cube root of unity, find the value of `omega + 1/omega`


If ω is a complex cube root of unity, find the value of (1 - ω - ω2)3 + (1 - ω + ω2)3


If `omega` is a complex cube root of unity, find the value of `(1 + omega)(1 + omega^2)(1 + omega^4)(1 + omega^8)`


If α and β are the complex cube roots of unity, show that α2 + β2 + αβ = 0.


If ω is a complex cube root of unity, show that (2 − ω)(2 − ω2) = 7


If ω is a complex cube root of unity, show that (1 + ω − ω2)6 = 64


If ω is a complex cube root of unity, show that (1 + ω)3 − (1 + ω2)3 = 0


If ω is a complex cube root of unity, find the value of (1 + ω2)3


If ω is a complex cube root of unity, find the value of (1 − ω − ω2)3 + (1 − ω + ω2)3


If ω is a complex cube root of unity, find the value of (1 + ω)(1 + ω2)(1 + ω4)(1 + ω8)


Find the equation in cartesian coordinates of the locus of z if |z – 2 – 2i| = |z + 2 + 2i|


If ω(≠1) is a cube root of unity and (1 + ω)7 = A + Bω, then A and B are respectively the numbers ______.


If ω is the cube root of unity then find the value of `((-1 + "i"sqrt(3))/2)^18 + ((-1 - "i"sqrt(3))/2)^18`


If (1 + ω2)m = (1 + ω4)m and ω is an imaginary cube root of unity, then least positive integral value of m is ______.


Let z = `(1 - isqrt(3))/2`, i = `sqrt(-1)`. Then the value of `21 + (z + 1/z)^3 + (z^2 + 1/z^2) + (z^3 + 1/z^3)^3 + ...... + (z^21 + 1/z^21)^3` is ______.


If w is a complex cube root of unity, show that `((a+bw+cw^2))/(c+aw+bw^2) = w^2`


If w is a complex cube root of unity, show that `((a + bw +cw^2))/(c +aw + bw^2) = w^2`


If w is a complex cube-root of unity, then prove the following:

2 + ω − 1)3 = −8


If w is a complex cube root of unity, show that `((a + bw + cw^2))/(c+aw+bw^2) = w^2`


If w is a complex cube root of unity, show that `((a+bw+cw^2))/(c+aw+bw^2) =w^2`


If ω is a complex cube root of unity, then prove the following.

2 + ω −1)3 = −8


If ω is a complex cube-root of unity, then prove the following :

2 + ω − 1)3 = − 8


If ω is a complex cube-root of unity, then prove the following:

2 + ω − 1)3 = −8


If w is a complex cube root of unity, show that `((a+bw+cw^2))/(c+aw+bw^2) = w^2`


If w is a complex cube root of unity, show that `((a+bw+cw^2))/(c+aw+bw^2)=w^2`


If w is a complex cube-root of unity, then prove the following. 

(w+ w - 1)= - 8


If w is a complex cube root of unity, show that `((a + bomega + comega^2))/(c + aomega + bomega^2) = w^2`


If ω is a complex cube root of unity, show that `((a + bomega + comega^2))/(c + aomega + bomega^2)=omega^2`


If ω is a complex cube-root of unity, then prove the following.

2 + ω − 1)3 = −8


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×