Advertisements
Advertisements
प्रश्न
If ω is a complex cube root of unity, find the value of (1 + ω2)3
उत्तर
ω is the complex cube root of unity
∴ ω3 = 1 and 1 + ω + ω2 = 0
Also, 1 + ω2 = – ω, 1 + ω = – ω2 and ω + ω2 = – 1
(1 + ω2)3
= (– ω)3
= – ω3
= –1
APPEARS IN
संबंधित प्रश्न
If `omega` is a complex cube root of unity, show that `(2 - omega)(2 - omega^2)` = 7
If ω is a complex cube root of unity, find the value of `omega + 1/omega`
If ω is a complex cube root of unity, find the value of ω2 + ω3 + ω4.
If `omega` is a complex cube root of unity, find the value of `(1 + omega)(1 + omega^2)(1 + omega^4)(1 + omega^8)`
If x = a + b, y = αa + βb and z = aβ + bα, where α and β are the complex cube roots of unity, show that xyz = a3 + b3.
Find the value of ω21
Find the value of ω–105
If ω is a complex cube root of unity, show that (2 − ω)(2 − ω2) = 7
If ω is a complex cube root of unity, show that (1 + ω − ω2)6 = 64
If ω is a complex cube root of unity, show that (1 + ω)3 − (1 + ω2)3 = 0
If ω is a complex cube root of unity, show that (3 + 3ω + 5ω2)6 − (2 + 6ω + 2ω2)3 = 0
If ω is a complex cube root of unity, show that `("a" + "b"ω + "c"ω^2)/("c" + "a"ω + "b"ω^2)` = ω2
If ω is a complex cube root of unity, show that (a − b) (a − bω) (a − bω2) = a3 − b3
If ω is a complex cube root of unity, find the value of ω2 + ω3 + ω4
If α and β are the complex cube root of unity, show that α4 + β4 + α−1β−1 = 0
Find the equation in cartesian coordinates of the locus of z if |z| = 10
Find the equation in cartesian coordinates of the locus of z if |z – 3| = 2
Find the equation in cartesian coordinates of the locus of z if |z − 5 + 6i| = 5
Find the equation in cartesian coordinates of the locus of z if `|("z" + 3"i")/("z" - 6"i")|` = 1
If ω(≠1) is a cube root of unity and (1 + ω)7 = A + Bω, then A and B are respectively the numbers ______.
If (1 + ω2)m = (1 + ω4)m and ω is an imaginary cube root of unity, then least positive integral value of m is ______.
If 1, α1, α2, ...... αn–1 are the roots of unity, then (1 + α1)(1 + α2) ...... (1 + αn–1) is equal to (when n is even) ______.
If w is a complex cube root of unity, show that
`((a + bw + cw^2)) /( c + aw + bw^2 )= w^2`
If w is a complex cube root of unity, show that `((a + bw +cw^2))/(c +aw + bw^2) = w^2`
If w is a complex cube root of unity, show that `((a + bw + cw^2))/(c+aw+bw^2) = w^2`
If w is a complex cube root of unity, show that `((a+bw+cw^2))/(c+aw+bw^2) =w^2`
If ω is a complex cube root of unity, then prove the following.
(ω2 + ω −1)3 = −8
If ω is a complex cube-root of unity, then prove the following:
(a + b) + (aω + bω2) + (aω2 + bω) = 0
If ω is a complex cube-root of unity, then prove the following:
(ω2 + ω −1)3 = −8
If ω is a complex cube-root of unity, then prove the following :
(ω2 + ω − 1)3 = − 8
If w is a complex cube root of unity, show that `((a + bw + cw^2))/(c + aw + bw^2) = w^2`
If ω is a complex cube root of unity, show that `((a + b\omega + c\omega^2))/(c + a\omega + b\omega^2) = \omega^2`