मराठी

If ω is a complex cube root of unity, find the value of (1+ω)(1+ω2)(1+ω4)(1+ω8) - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

If `omega` is a complex cube root of unity, find the value of `(1 + omega)(1 + omega^2)(1 + omega^4)(1 + omega^8)`

बेरीज

उत्तर

ω is a complex cube root of unity
∴ ω3 = 1 and 1 + ω + ω2 = 0

Also, 1 + ω2 = -ω, 1 + ω = - ω2 and ω + ω2 = – 1

(1 + ω)(1 + ω2)(1 + ω4)(1 + ω8)

= (1 + ω)(1 + ω2)(1 + ω)(1 + ω2)        ...[∵ ω3 = 1, therefore ω4 = ω]

= (- ω2)(- ω)(- ω2)(- ω) = ω6 = (ω3)2 = (1)2  =1.

shaalaa.com
Cube Root of Unity
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 3: Complex Numbers - EXERCISE 3.3 [पृष्ठ ४२]

APPEARS IN

बालभारती Mathematics and Statistics 1 (Commerce) [English] 11 Standard Maharashtra State Board
पाठ 3 Complex Numbers
EXERCISE 3.3 | Q 2) v) | पृष्ठ ४२

संबंधित प्रश्‍न

If ω is a complex cube root of unity, find the value of (1 + ω2)3


If x = a + b, y = αa + βb and z = aβ + bα, where α and β are the complex cube roots of unity, show that xyz = a3 + b3.


Find the value of ω18


Find the value of ω21


Find the value of ω–105


If ω is a complex cube root of unity, show that (a − b) (a − bω) (a − bω2) = a3 − b3


If ω is a complex cube root of unity, find the value of `ω + 1/ω`


If ω is a complex cube root of unity, find the value of ω2 + ω3 + ω4


Find the equation in cartesian coordinates of the locus of z if |z + 8| = |z – 4|


Select the correct answer from the given alternatives:

If ω is a complex cube root of unity, then the value of ω99+ ω100 + ω101 is :


If ω is the cube root of unity then find the value of `((-1 + "i"sqrt(3))/2)^18 + ((-1 - "i"sqrt(3))/2)^18`


If the cube roots of the unity are 1, ω and ω2, then the roots of the equation (x – 1)3 + 8 = 0, are ______.


Simplify the following and express in the form a + ib.

`(3i^5 + 2i^7 + i^9)/(i^6 + 2i^8 + 3i^18)`


If w is a complex cube root of unity, show that `((a+bw+cw^2))/(c+aw+bw^2) = w^2`


If w is a complex cube root of unity, show that

`((a + bw + cw^2)) /( c + aw + bw^2 )= w^2`


If w is a complex cube root of unity, show that `((a + bw +cw^2))/(c +aw + bw^2) = w^2`


If w is a complex cube-root of unity, then prove the following:

2 + ω − 1)3 = −8


If ω is a complex cube-root of unity, then prove the following:

(a + b) + (aω + bω2) + (aω2 + bω) = 0


If ω is a complex cube-root of unity, then prove the following:

2 + ω − 1)3 = −8


If w is a complex cube-root of unity, then prove the following. 

(w+ w - 1)= - 8


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×